
HTW Dresden - University of Applied Sciences

Faculty of Computer Science and Mathematics

Department of Artificial Intelligence

Master Thesis

Course of Studies: Computer Science

Topic:

Question Answering with Unstructured Data

Alexander Bresk

Dresden, July 21, 2015

Thesis Supervisor : Prof. Dr.-Ing. habil. Hans-Joachim Böhme

Contents

Acronyms vii

Glossary ix

List of Figures xii

1. Introduction 1

1.1. Motivation . 1

1.2. Aims . 2

1.3. Related Work . 4

1.3.1. LogAnswer . 4

1.3.2. Ephyra . 6

1.3.3. QANUS . 7

1.3.4. Qanda . 10

1.3.5. AskMSR . 12

1.3.6. QuASE . 13

1.4. Conclusion of Related Work . 14

1.5. Outline of the Thesis . 15

2. Technical Base 16

2.1. Notations & Measures . 16

2.1.1. Answer Type Detection . 16

2.1.2. Answer Representation . 17

2.1.3. Performance Measures . 17

2.2. Machine Learning Techniques . 21

2.2.1. Naive Bayes Classifier . 21

2.2.2. Multilayer Perceptron . 23

2.3. Software & Frameworks . 24

2.3.1. KNIME - Konstanz Information Miner 25

i

Contents

2.3.2. Weka3 . 25

2.3.3. Stanford NLP Core . 26

2.3.4. Apache Lucene . 27

2.3.5. JSoup and Palladian . 28

2.3.6. GSON - Google JSON . 28

2.4. Data Sources . 28

2.4.1. GermaNet . 29

2.4.2. SALSA . 29

2.4.3. DATD & AR Data . 30

2.4.4. TSDD Data . 31

3. The chiAQuery System 32

3.1. System Overview . 32

3.1.1. Request & Response . 33

3.1.2. Question, Query & Answer . 35

3.1.3. Knowledge . 36

3.1.4. Exceptional Question Handling 37

3.1.5. ChiaqueryHelper . 39

3.2. Features & Starting Options . 40

3.2.1. Question Answering . 40

3.2.2. Client Server Architecture . 40

3.2.3. Indexing & Search . 41

3.2.4. Feature Detectors for Model Training 41

3.2.5. Annotation . 43

3.2.6. Help . 43

3.3. Created Databases & Models . 43

3.3.1. SemMap . 43

3.3.2. SynMap . 44

3.3.3. Verb Database . 45

3.3.4. Pronoun Database . 45

3.3.5. Acronym Database . 46

3.3.6. Filter Database . 46

3.4. Directory Structure . 46

4. Text Annotation 48

4.1. Document Preprocessor . 49

ii

Contents

4.2. Part-of-Speech Tagger . 49

4.3. Named Entity Recognition . 50

4.4. Text Normalization . 50

4.4.1. Verb Normalizer . 51

4.4.2. Symbol Normalizer . 51

4.4.3. Acronym Normalizer . 52

4.4.4. Pronoun Normalizer . 53

4.4.5. Number Normalizer . 53

4.5. SynMap Processor . 54

4.6. SemMap Processor . 54

4.7. Semantic Extractors . 55

4.8. Index Structures for Annotated Documents 56

5. Input Processing 59

5.1. Question Preprocessor . 59

5.2. POS Tagger . 60

5.3. Named Entity Recognition . 61

5.4. Text Annotation for Questions . 62

5.4.1. Question Normalization . 62

5.4.2. SemMap Processor . 64

5.4.3. SynMap Processor . 64

5.4.4. Semantic Extractors . 65

5.5. Answer Type Detection . 65

5.6. Answer Representation Detection . 68

6. Query Processing 70

6.1. Query Generation . 70

6.1.1. Lucene Query Generation . 70

6.1.2. Query Plan Creation . 71

6.2. Coarse Document Search . 73

6.2.1. Queries . 74

6.2.2. Scoring . 74

6.3. Web Document Search . 75

6.3.1. Queries . 75

6.3.2. Readability Techniques . 75

iii

Contents

6.4. Query Processor . 76

6.4.1. Build-Up . 76

6.4.2. Processing Facts . 77

6.4.3. Processing Paragraphs . 79

6.4.4. Answer Candidates . 80

7. Answer Selection & Presentation 81

7.1. Answer Processor . 81

7.1.1. Answer Filters . 81

7.1.2. Register & Rank Answer Candidates 82

7.1.3. Apply Answer Representation . 82

7.2. Natural Language Generation . 83

8. Experiments & Evaluation 84

8.1. Introduction . 84

8.1.1. Annotation for Model Training 84

8.1.2. From Phrase to ARFF . 85

8.1.3. ChiaqueryQABenchmark module 85

8.1.4. Error Classes . 86

8.1.5. Experimental Data Sets . 86

8.1.6. The Experimentation Environment 88

8.2. Experiments . 88

8.2.1. Answer Type Detector . 89

8.2.2. Answer Representation . 90

8.2.3. Query Generation Algorithm . 92

8.2.4. Content Readability Experiments 93

8.2.5. GSON Performance . 94

8.2.6. Closed Domain Question Answering 95

8.2.7. Open Domain Question Answering 96

8.3. Evaluation . 97

8.3.1. Answer Type Detector . 97

8.3.2. Answer Representation . 98

8.3.3. Query Generation Algorithm . 98

8.3.4. Content Readability Experiments 99

8.3.5. GSON Performance . 99

8.3.6. Closed Domain Question Answering 101

iv

Contents

8.3.7. Open Domain Question Answering 101

9. Conclusion & Further Work 103

9.1. Conclusion . 103

9.2. Further Work . 103

9.2.1. Current System Improvements . 104

9.2.2. Further Experiments . 106

9.2.3. Future System Ideas . 108

Literature 111

A. Appendix 116

A.1. Figures . 116

A.2. Tables . 121

A.3. Acknowledgements . 124

B. Derived Theses 125

Index 126

v

Abstract

With the use of unstructured text documents a question answering system for the Ger-

man language is designed, developed and tested. Beside this, a novel approach for a

feature extractor for answer type detection and crucial parts of a question answering

system are, for the first time, applied to the German language. Parts of the system are

evaluated to find the best parameters and configuration for a successful deployment. The

system offers a text annotation pipeline that can be used for a wide variety of natural

language processing tasks.

vi

Acronyms

AMS Annotation Management System

ANN Artificial Neural Network

API Application Programming Interface

AR Answer Representation

ARFF Attribute-Relation File Format

ATD Answer Type Detection / Detector

BSON Binary JSON

CLI Command Line Interface

CRF Custom Random Fields

CSV Comma Separated Value

CoNLL Conference on Computational Natural Language Learning

DATD Detailed Answer Type Detection / Detector

DOM Document Object Model

FFRDC Federally Founded Research Development Center

GSON Google JSON Library

HGC Huge German Corpus

HTML Hyper Text Markup Language

HTW Hochschule für Technik und Wirtschaft

IDF Inverse Document Frequency

IP Internet Protocol

IR Information Retrieval

JSON JavaScript Object Notation

KB Knowledge Base

LOC Location

MISC Miscellaneous

MIT Massachusetts Institute of Technology

NE Named Entity

NER Named Entity Recognition

vii

Contents

NLG Natural Language Generation

NLP Natural Language Processing

ORG Organization

PER Person

PHP Hypertext Preprocessor

POS Part of Speech

QA Question Answering

SERP Search Engine Result Page

STTS Stuttgart Tübingen Tag Set

TF Term Frequency

TREC Text REtrieval Conference

URL Uniform Resource Locator

VSM Vector Space Model

XML EXtensible Markup Language

viii

Glossary

Answer Candidate A string/character sequence that was originally extracted from a

text to possibly contain the correct answer to a given question.

Answer Extraction Desribes the process of extracting answer candidates from the text.

Answer Filter These filters are checking a set of answer candidates according to plau-

sibility, meaningfulness and type.

Answer Representation A representation of an answer describes the display options

and type of announcement. This can be as list, as simple fact or as complex

paragraph.

Answer Type The answer type of a question is estimated during question answering

process. This type reveals which type of answer the given question requires. To

realize this task, a specific taxonomy is used.

ARFF File An ARFF file contains feature vectors and their labels. The data format

was developed to train and represent statistical models.

Cognitive Systems The realization of psychology research into computer models is

called cognitive systems. These systems use complex models to link information

and compute on complex data structures.

Deep Question Parsing This term is used to point out that the parsing of a ques-

tion includes semantic and syntactic processing as well as logical reasoning on the

question or query.

Extractor In this work an extractor is used to locate or extract information from text.

The purpose of extraction depends on the specific extractor.

ix

Glossary

Feature Detector/Extractor This part of the system realizes the transformation from

text to feature vector. This transformation follows rules that were previously

described and are later applied on each input text. In general, the feature detector

transforms raw input to a point in feature space.

Feature Vector Describes a vector that contains all characteristics of a given prob-

lem, called features. The n-dimensional feature vector can be projected into a

n-dimensional feature space.

Information Retrieval Information retrieval describes the task of finding relevant infor-

mation in a set of documents.

Knowledge Base Describes a database that contains structured information. This in-

formation pairs are representing a specific kind of knowledge.

Named Entity Recognizer A program that finds named entities in text data. Examples

for named entities could be a location, person or an organization.

Natural Language Processing Describes an area of research in artificial intelligence

and machine learning. The trained models are working on natural language or on

human language data.

N-Grams Describes a pair of consecutive tokens or elements that are combined to a

gram (or cluster). For example, the word die can be seen as 3-gram.

Part of Speech / POS POS represents the grammar of a given text (sentences or ques-

tion). The grammar is denoted with specific tags (like ADJ for adjectives).

Plausibility/Sanity-Checks These checks are performed to evaluate which answer can-

didate is plausible to the question.

Search Engine Result Page / SERP This page is provided from the search engine and

it contains relevant documents according to the query.

Semantic Frame A semantic frame is a semantic interpretation of something (in this

thesis a word or a group of words. Each word can correspond to a number of

semantic frames.

Stemmer A stemmer tries to break down a word to the stem. For this, the stemmer

uses language-specific algorithms.

x

Glossary

Structured Data In contrast to unstructured data, this type of data can be used to

perform structured search requests.

Tagger A tagger walks through a set of data and attaches tags (often called labels) on

the data set. Taggers can perform different tasks.

Text Normalization Describes the process of making text comparable. After the input

text was normalized (pruned, stemmed and enriched with word relations) it can

be compared to other input text or to a set of similar normalized text documents.

Unstructured Data Can be seen as a synonym for a simple text document that just

contain sentences or language-specific constructs.

xi

List of Figures

1.1. System architecture of LogAnswer system proposed in [19]. The system

consists of four main parts: Linguistic Analysis and Retrieval, Knowledge

Base, Deduction and Answer Generation. 5

1.2. Processing pipeline of Ephyra system for factoid and list questions pro-

posed in [39]. The system is divided into three parts: Query generation,

Search and Answer Selection. 7

1.3. System architecture of QANUS system introduced in [34]. The framework

and the additional components are shown. 8

1.4. System architecture of QA-SYS system built on top of QANUS [34]. The

conceptional framework was already introduced in figure 1.3. 9

1.5. System architecture of Qanda as it was introduced in 2002 by Burger

and Mardis [32]. The figure is specialized to show the straight way from

question to answer. 10

1.6. System architecture of AskMSR as proposed in Banko et al. [6]. The

n-gram approach is presented here. 12

1.7. The system framework as introduced in Sun et al. [41]. The system uses

infromation from a structured database (Freebase) to find the most likely

answers. 13

2.1. Answer representation types of the Question Answering system 17

2.2. An example ROC space that shows the true positive rate on the y-axis

and the false positive rate on the x-axis. 21

2.3. Visualization of an mulitlayer perceptron. The feature vector is applied

on the input layer and forward propagated to the output layer. 23

2.4. List of all named entity classes of the Stanford Core NLP tagger 26

2.5. GermaNet statistics of version 10.0 . 29

2.6. Self annotated data sets used in this thesis 30

3.1. Coarse overview of the Question Answering process 33

xii

List of Figures

3.2. Request to response structure of the system to handle all incoming queries.

This figure is focused on the QA branch. 34

3.3. A sample request to the QA branch of chiAQuery system. Displayed with

JSON format . 35

3.4. A sample response from the QA branch of chiAQuery system. Displayed

with JSON format. 35

3.5. Visualization of the ChiaqueryKnowledge module. Unstructured docu-

ments are indexed in into the local knowledge. During execution time the

module is able to lookup the web for relevant documents. 37

3.6. Visual explanation of the Exceptional Question Handling. Exceptional

questions are skipping the common QA procedure and can be answered

using the handler. 38

3.7. Statistics of the current SemMap version implemented in the system . . . 44

3.8. Comparison between SynMap and GermaNet speed 44

3.9. Content of SynMap files . 45

4.1. An input sentence after DocumentPreprocessor 49

4.2. An input sentence and its corresponding POS tags according to the tag

set illustrated in figure A.9 . 50

4.3. An input sentence and its corresponding NE tags according to the set of

possible NE tags illustrated in figure 2.4 50

4.4. An input sentence and its corresponding verb normalizer output 51

4.5. An input sentence and its corresponding symbol normalizer output . . . 52

4.6. An input sentence and its corresponding acronym normalizer output . . 52

4.7. Procedure of pronoun normalizer with an example 53

4.8. An input sentence and its corresponding symbol normalizer output . . . 53

4.9. An input sentence and its corresponding SynMap output 54

4.10. Input sentences and their corresponding SemMap output 55

5.1. Question after preprocessing step . 60

5.2. Questions after POS tagging using the tag set depicted in figure A.9 . . . 60

5.3. Questions after NE recognition using the tags depicted in figure 2.4 . . . 61

5.4. Questions after text normalization . 63

5.5. Questions after SemMap processing . 64

5.6. Questions after SynMap processing . 64

xiii

List of Figures

5.7. The conceptual view of the answer type detector. The statistical feature

extractor delivers the feature vectors for the multilayer perceptron which

learns the coherencies of the features. 66

6.1. Algorithm A to create Lucene queries . 71

6.2. Algorithm B to create Lucene queries . 71

6.3. Conceptual description of QueryProcessor module. Each query plan is

applied to each document. After the generation of answer candidates,

plausibility checks and scoring are applied. 77

8.1. Error classes for Question Answering . 86

8.2. Comparison of accuracy values between baseline classifier and V4 archi-

tecture. 90

8.3. ROC space of CLASSES experiment. Comparison between baseline and

V4 classifier. 91

8.4. Results of the answer representation experiment 91

8.5. Confusion matrix of answer representation experiment 91

8.6. ROC space of the Answer Representation classifier 92

8.7. Result of Query Generation experiment 93

8.8. Experimental results of the content readability experiment 94

8.9. Results of GSON Experiment . 94

8.10. Performance of Closed Domain QA . 95

8.11. ATD and AR results of Closed Domain Question Answering 95

8.12. Performance of Open Domain QA . 96

8.13. ATD and AR results of Open Domain Question Answering 96

8.14. Baseline classifier confusion matrix. Classes HUM and NUM produce the

most confusion. 97

8.15. V4 classifier confusion matrix. The classification of class ENT can be

seen as a problem and the improvement should be an object for further

experiments. 97

A.1. ROC space of ABBREVIATION class. Comparison between baseline and

V4 classifier. 116

A.2. ROC space of DESCRIPTION class. Comparison between baseline and

V4 classifier. 117

xiv

List of Figures

A.3. ROC space of ENTITY class. Comparison between baseline and V4 clas-

sifier. The legend was waived caused by the lack of space. Note that stars

depict a V4 result and circles illustrate a baseline result. Same colors

correlate to same classes. 117

A.4. ROC space of HUMAN class. Comparison between baseline and V4 clas-

sifier. 118

A.5. ROC space of LOCATION class. Comparison between baseline and V4

classifier. 118

A.6. ROC space of NUMERIC class. Comparison between baseline and V4

classifier. 119

A.7. System overview of the chiQAuery system. The figure shows the annota-

tion pipeline as well as the processing pipeline of the system. 120

A.8. All classes that are used to classify a question 121

A.9. Overview of STTS tag set used for Part Of Speech tagging 122

A.10.Results of the CLASSES classifier . 123

A.11.Results of the the ABBREVIATION classifier 123

A.12.Results of the the DESCRIPTION classifier 123

A.13.Results of the the ENTITY classifier . 123

A.14.Results of the the HUMAN classifier . 123

A.15.Results of the the LOCATION classifier 124

A.16.Results of the the NUMERIC classifier 124

xv

1. Introduction

In modern times data has more value than ever. Companies operate on large scale

computer systems to evaluate tons of data sets for smarter decisions. Researchers and

data scientists are querying large unstructured data sets to find answers, trends and mine

new knowledge out of these sets. But a few more fields of application exist, for instance

a robot that answer questions that were asked by humans. All of the mentioned and

even more tasks can be solved by question answering. QA describes the task from taking

a raw bunch of text (a question), process it and end up with providing the right answer.

This task is very complex and consists of a high number of algorithms, statistical models

and an efficient code base. One of the main challenges in natural language processing is

the problem to make text computable. But text isn’t text at all.

This thesis provides the first factoid question answering system for the German language.

Furthermore it provides a new approach to answer type classification, introduces answer

representation and brings in combined data sources for the German language to complete

the task.

1.1. Motivation

Question answering is one of the current research fields in the area of natural language

processing. Thereby, the research community is limited to English-based systems to

participate at well known conferences, for instance the TREC1. The review of all known

question answering systems leads to the conclusion that no German-based system oper-

ating on unstructured data exists, which was one of the main motivations for this thesis.

Another main motivation was to get a deep understanding of all natural language pro-

cessing tasks that are important to create a question answering system. This complex

task and the way to create such a system from the scratch leads to a lot of byproducts

and spin-offs that can be used for other natural language processing tasks.

1Text REtrieval Conference

1

1. Introduction

These tasks are part-of-speech tagging, named entity recognition, semantic annotation

and text normalization to name just a few. Another motivation was to create a text

processing pipeline that is able to get a deep understanding of the text input to use it

for a wide variety of natural language processing tasks.

1.2. Aims

This section describes the goals of the thesis. This will be done in two steps. The first

step describes the goals for a practical use of the thesis outcomes and the second part

describes the focus during development of the Question Answering system. Below the

goals for the practical use are listed:

Proof for German QA in unstructured data sets The systems that are constructed to

work on an English corpus are already working. This thesis should provide a

baseline for German QA on unstructured data. Furthermore no test sets exists to

measure a classifier or system output against another German system. One of the

byproducts of this thesis are sets to train answer type and answer representation

classifier as well as test set to evaluate the question answering process.

Part of a human machine interaction system The HTW Dresden (University of Ap-

plied Sciences) has a project in cooperation with a museum located in Dresden.

The university developed a robot that explains the exhibition and guides the visi-

tors through it. Beside a small talk the robot shall also be able to answer technical

questions about the exhibition.

Replacing Frequently Asked Questions FAQs on conventional web sites that provide

information for customer can be replaced with an input field that searches in

company knowledge to provide the correct answer or a comprehensive description.

Querying Text Documents using Natural Language Mining in text data is one of the

most demanded tasks of companies and organizations. This can help researchers or

employees to get a comprehension of a term exploration that finds related locations,

persons, organizations, dates, weights, distance, semantic relations and more. To

realize this the system that was created for this thesis builds an ideal framework.

Querying the Word Wide Web using Natural Language All tasks that were mentioned

in the aim above, can also be realized online using the knowledge of the world wide

2

1. Introduction

web. Furthermore the open domain QA, which is a huge research interest in the

NLP community, can be tackled using German language models. The world wide

web also has the advantage that systems with low disk space can use the power of

the network to produce an answer or a term exploration result.

These goals for the practical use describe a wide range of applications. The system

was designed to easily cover all of these aims where the focuses and aims of development

can be described as follows:

Serial pipeline Each step shall be done after another for two main reasons. The first

reason is to easily switch modules on and off for experiments and the second reason

is the quicker understanding of what the system does during the process. For an

experimental system this architecture seems to be ideal. This can be parallelized

in the future.

Speed The system was designed to do all the time consuming work at start up. This

leads to smart time management which results in faster response times and a

better performance during QA process. Furthermore all database are loaded into

fast Java structures and were mapped for reverse lookup in hash maps.

Client Server Architecture Another important aim was to develop the system as client/

server application to ensure the operation on thin clients that have not enough

memory or disk space to execute the complete system. For instance the robot

of the HTW Dresden (named August der Smarte) needs memory and disk space

to handle other tasks like navigation, localization and people detection/tracking.

The robot will use this system as a client and connects to the server to use the

lightweight API.

Fast configurable A fast configuration is desirable if a lot of parameters can be changed.

For this the system has a centralized and well documented configuration file. One

of the main reason for formulating this aim is the fast configuration during exper-

imentation stage. The configuration file contains numeric parameters that change

the behavior of the system as well as paths that are pointing to a database or

model.

Easy Serializable Serialization is a well-known problem to all developers and scientists.

JSON (Javascript Object Notation) provides a elegant and slim structure to repre-

sent data. This system was designed with the requirement to serialize every object

3

1. Introduction

and system state in an easy way. This is necessary for the text annotation, easy

debugging and to realize a lean API that consists of just two Java classes which

can be serialized to JSON and loaded into an object in an easy way.

Confidence of Question & Answer Question Answering needs a lot of measures to de-

cide which answer is correct. To give the end-user a metric, the system should pro-

vide confidences about how well the question was understood and how accurate

and valuable the answer seems.

1.3. Related Work

After the definition of the goals and aims of this thesis the research of related work tried

to find similar systems and researchers with mutual interests. The issue of comparison

with other systems is grounded by two essential problems:

• Returning of related passages instead of facts

• The target language and the associated mechanisms and test sets

All reviewed systems that are described in this section match at least one of this prob-

lems. Therefore this section deals with the systems that are the closest to the system

that will be introduced and described in this thesis. All systems are explained with

their most important features in short. Further considerations are beyond the scope of

this thesis. To get advanced knowledge about one of these approaches consult the cited

sources.

1.3.1. LogAnswer

LogAnswer was organized by Prof. H. Helbig (FernUniversität Hagen) as well as Prof.

U. Furbach (Universität Koblenz-Landau) and is currently the only system that pro-

vides Question Answering for German language. The system was introduced [19] in

2008, inspired by other rule-based QA and Natural Language Processing systems like

PowerAnswer [33], Senso [37] and DORIS [4]. Since then presented on a few conferences

like CLEF2 and QA4MRE3.

The system uses a corpus of unstructured data and annotates it with the WOCADI

[22] parser to a MultiNet [23] representation of the data. MultiNet is a multi-layered

2Conference and Labs of the Evaluation Forum
3Question Answering for Machine Reading Evaluation

4

1. Introduction

semantic network that holds knowledge and can be queried easily. The knowledge is

stored in the IRSAW retrieval module. This will be used to retrieve specific passages

that are related to the answer. The query is decomposed into a logical representation a

so-called conjunctive list of query literals [19]. After passage retrieval and ranking the

answer will be selected. For these logical tasks the system uses the MultiNet Prover

[23] as well as the E-KRHyper Prover [35]. Figure 1.1 provides a short overview of the

system, as it was provided in 2008.

Figure 1.1.: System architecture of LogAnswer system proposed in [19]. The system
consists of four main parts: Linguistic Analysis and Retrieval, Knowledge
Base, Deduction and Answer Generation.

According to [19] the following four conceptional steps in the QA pipeline exist. The

first step deals with linguistic analysis which transforms the question into a MultiNet

representation and does the classification of the question type. The next step then uses

the transformed representation to analyze documents that possibly contain the answer.

Therefore the knowledge base is requested with found lexical and logical relations. The

constructed query and the extracted facts from the knowledge base are then heading

into the deduction process. This process contains logical provers that are based on

MultiNet mechanisms. After that the proven facts are heading into the process of answer

generation. Before the presentation of the answer, the candidates were checked by the

sanity criterion and formatted for presentation.

5

1. Introduction

In contrast to the system presented in this thesis, the question classification is limited

to two answer types (just definition and factual). The chiAQuery system, introduced

in this thesis, uses more classes than just two. Another difference between these two

systems is that LogAnswer just returns the passage that contains the answer instead of

returning the asked fact, list or paragraph. The advantage of using decomposed rules to

represent a question can be the understanding of temporal reasoning, their descriptions

and to understand deep semantic relations in general.

The web interface of LogAnswer4 can be used for queries against the German Wikipedia

corpus. The follow up project of LogAnswer is named RatioLog5.

1.3.2. Ephyra

This system was first developed by Nico Schlaefer and proposed at TREC 2006 [39] as

well as TREC 2007 [40]. It works for english language and classifies into 44 question

classes. For this classification the system uses lexical features (n-grams), syntactic fea-

tures (W-word, verbs and more) and semantic features (using WordNet [14] relations).

Another classification determines between factoid, list or other questions which can be

compared to the Answer Representation type (see section 5.6) of the system described

in this thesis. After this the question will be split into focus, property and context.

The system contains handwritten-rules that are, depending on the found answer type,

searching in the text to find the correct patterns. Question-answer pairs are learned

by the system using these rules. The system also uses a pipeline for text annotation

containing the Named Entity Tagger of the OpenNLP toolkit6 and stores the annotated

data in the Indri IR engine7. Figure 1.2 provides a short overview of the Ephyra system

with all sub-systems for processing factoid and list questions. As the figure points out

the process from question to answer can be explained in three parts: Query Generation,

Search and Answer Selection. Ephyra itself can be seen as a framework which can be

extended with generators, miners and filters. The system was renamed into openEphyra

and an open-source version of the system can be downloaded on the project page8.

4The web interface of LogAnswer http://www.loganswer.de/
5Project page http://ratiolog.uni-koblenz.de/
6Can be downloaded on http://opennlp.sourceforge.net/
7Project page of Indri IR http://www.lemurproject.org/
8Project page of openEphyra http://www.ephyra.info/

6

1. Introduction

Figure 1.2.: Processing pipeline of Ephyra system for factoid and list questions proposed
in [39]. The system is divided into three parts: Query generation, Search
and Answer Selection.

1.3.3. QANUS

The system by Ng and Kan [34] that is correctly pronounced KAY-NESS was developed

to provide a QA framework that combines routines that are often used by Question

Answering systems. According to Ng and Kan the entry point for researchers that want

to deal with Question Answering is very high. This was the main motivation for the

development of QANUS.

The framework is organized as described in figure 1.3. Four main parts exist, that can

be divided into:

• Information Source Preparation

• Question Processing

• Answer Retrieval

• Evaluation

7

1. Introduction

All four of these parts have two conceptual sub layers which are FrameworkController

and a FrameworkEngine. These parts can be extended using an own logic to control the

behavior of the pipeline. As figure 1.3 shows, the process through the pipeline is quite

straight forward.

Figure 1.3.: System architecture of QANUS system introduced in [34]. The framework
and the additional components are shown.

To show the quality and flexibility of the framework, Ng and Kan developed a Question

Answering system called QA-SYS on top of the QANUS framework. The architecture

of QA-SYS is shown in figure 1.4. All of the four main parts described above can be

found in this figure with their appropriate and specific implementations. Below the four

main parts and the specific implementations are listed:

Information Source Preparation They used the AQUAINT-29 data and provided an

XML-parser for this task. After this the system build a Lucene (will be introduced

in section 2.3.4) index on the data.

Question Processing The taxonomy and data from Li and Roth [26] is used in this

approach. The work introduced in this work as well as QA-SYS are using the

taxonomy proposed by Li and Roth. For classification the proposed classifier from

Manning and Klein [30] is used.

9Can be downloaded on http://www.nist.gov/tac/data/forms/index.html

8

1. Introduction

Answer Retrieval For retrieval of the correct answer the Lucene query returns passages

that are likely to contain the correct answer. Therefore the Named Entity Recog-

nizer proposed by Finkel et al. [15] is used and named entities are linked to the

answer type taxonomy described earlier. Based on passage based heuristics and

word counts the best answer candidate is selected.

Evaluation QA-SYS handles just factoid questions which leads to a simple measure for

evaluation. The evaluation is done using the accuracy measure which is defined as

Number of Correct Answers divided by the the Number of All Questions.

Figure 1.4.: System architecture of QA-SYS system built on top of QANUS [34]. The
conceptional framework was already introduced in figure 1.3.

Another system that was built on top of the QANUS framework is iceQA from Geirs-

son [18]. This system is the first question answering that handles the icelandic language.

Geirsson used IceNLP to annotate data from icelandic web services for evaluation. The

processing pipeline is similar to the handling of QA-SYS as well as the question classi-

fication which is done using the Li and Roth [26] taxonomy.

These two examples of an implementation of QANUS show the practicality of this frame-

work.

9

1. Introduction

1.3.4. Qanda

This system was firstly described in 2002 by Mardis et al. [32] as TREC competitor

to other attending systems. Qanda was developed at MITRE10 and is based on an An-

notation Management System which is in turn based on a semantic tagger, annotator

and mapper for text called Catalyst11. These frameworks ensure an abstraction layer to

Figure 1.5.: System architecture of Qanda as it was introduced in 2002 by Burger and
Mardis [32]. The figure is specialized to show the straight way from question
to answer.

build rich Question Answering systems.

The system deals with factoid question as well as with ’definition’ questions. The fol-

lowing list describes the main components of the system that are also shown in figure

1.5 as conceptional overview:

Document Processing Here the documents undergo a deep analysis of structure and

semantics. A POS-tagger, NE-recognizer and a tokenizers are used as well as the

extraction of temporal expressions.

10MITRE Research is a not-for-profit organization that is devoted to federally founded research and a
FFRDC of the United States.

11A project that received funding from the European Union’s Seventh Framework Programme for
research. n°6611188. Project page http://catalyst-fp7.eu/

10

1. Introduction

Question Analysis The question is chunked and parsed to find meaning and need of the

given question. The meaning of the question is expression in the following terms:

anchor, property, name, answer restriction, event, salient entity, geographical re-

striction, temporal restriction and superlative.

IR Wrappers The wrapper for Information Retrieval is provided in the AMS system.

Qanda uses Lucene (will be introduced in section 2.3.4) for coarse document search.

The queries are processed using the phrase operator and the weights that the

Lucene system provides.

Passage Processing Qanda applies the log-IDF measure on all retrieved documents to

find the most related passages in the result set. The most related passages are

then forwarded to the rest of the Question Answering pipeline.

Fixed Repertoire Taggers These taggers find named entities like locations and are able

to specify them as cities or states. This is done using fixed word lists. The taggers

are also able to find animals, metals and a few more categories.

Numeric Taggers Beside the fixed repertoire taggers the numeric taggers are used to

find numeric values and their corresponding measures or units to determine the

semantic of the numeric value, which can be: currency, weight and so on.

Overlap Here WordNet [14] comes into account to find overlapping features between

the question and the retrieved passages with their specific tags. Some of these

features are named: Context IDF Overlap, Context Unigram Overlap, Context

Bigram Overlap, Context Question Restriction Overlap, Context Salient Overlap

and Context Synonym Overlap. A few other features extract but for a short

summary the features mentioned here are sufficient.

Answer Collection and Ranking With all information from the Overlap-process the

possible answers are collected and ranked using the features mentioned above.

Answer Selection After the ranking the selection algorithm decides which answer will

be the final one. Therefore the factoid and list answers are just chosen from ranking

but the questions that ask for a definition or a paragraph need to be preprocessed

before printing.

The components described above are from Bayer and Burger [7] where the participation

of Qanda in TREC track12 was discussed.

12Text REtrieval Conference Open-Domain Question Answering competition

11

1. Introduction

1.3.5. AskMSR

The AskMSR (Ask Microsoft Research) project was developed by Banko et al. [2] and [6]

in the Microsoft Research Labs in Redmond. The system overview is shown in figure 1.6

with all components that the basic system had. The components are shortly explained

below:

Rewrite Query The asked question will be rewritten by morphological similarities that

the system found in its database. For the example in figure 1.6 the type of question

is a location and the question is transformed into multiple versions that ask for a

location. The queries are then sent to a search engine (in this case Google Search).

Mine N-Grams From the queries that were sent to the search engine the 1-, 2- and

3-grams are counted and ranked by their occurrence. For this only the summaries

of the search engine result pages (SERPs) are used.

Filter N-Grams These ranked n-grams are then mapped to the expected answer type

with a few handwritten rules and filters.

Tile N-Grams After the filtering the n-grams are tiled together to construct an answer

from these rankings and processing.

The description of the system components points out that this system is only able

to solve factoid questions. Because of the n-gram mining structure of the system no

processing of ’description’ or ’explain’ question was intended. The ARANEA system

Figure 1.6.: System architecture of AskMSR as proposed in Banko et al. [6]. The n-gram
approach is presented here.

which is a complete re-implementation of AskMSR was proposed by Lin [28]. Lin tackles

12

1. Introduction

the redundancy-based approach again and described his system more modular than

AskMSR. Furthermore his system provides a better control of experiments caused by

its architecture. In addition Lin claims his work as a guideline for future researchers

dealing with Question Answering.

1.3.6. QuASE

Sun et al. [41] proposed a system that is named QuASE (Question Answering via Seman-

tic Enrichment) and uses semantic resources to find the correct answer. The researchers

are claiming with three main contributions which consist of the new QA framework, the

new Answer Type Checking Model and Extensive Experimental Evaluation. All of these

three contributions are new in their field and a step towards a rich Question Answering

system. They are using Freebase13 as a semantic knowledge base (KB) to find semantic

relations in the question and to answer them. For linking text passages to entities an

Entity Linking Tool [10] is used. Below the Question Answering pipeline of QuASE will

Figure 1.7.: The system framework as introduced in Sun et al. [41]. The system uses
infromation from a structured database (Freebase) to find the most likely
answers.

be described in short:

Web Sentence Selection via Search Engine The question acts as a query for a com-

mercial search engine (Google Search in this case). The best 50 documents are

processed. This processing calculates a cosine similarity of word count vectors.

Therefore every sentence in the documents is transformed in a word vector rep-

resentation ws. The question is also transformed in a word vector representation

wq and the cosine similarity is calculated between the question and the sentences

similarity = cos(wq, ws). The sentences that deviates the most are discarded.

13Freebase will be no longer maintained and was merged into the Wikidata project.

13

1. Introduction

Answer Candidate Generation via Entity Linking Here the entity linking comes into

account that tries to find entities in Freebase that are related to the question and

the answer.

Feature Generation and Ranking After entity linking the similarity scores are calcu-

lated and ranked. For this a bunch of features are used: counts, frequency, textual

relevance on question and answer candidate sides.

The researchers also propose a new Word to Answer Type Model that calculates the

probability P (t|w) of an observing Freebase type t when word w exists in the question.

After a detailed research of related works this system can be seen as one of the most

modern systems in Question Answering.

1.4. Conclusion of Related Work

The systems, discussed in section 1.3, are chosen because of their similarity to the system

developed in this thesis. As mentioned earlier there is no system available which tackles

exactly the same field of research. Therefore the most similar systems were chosen for

the English language.

After studying these systems, a bunch of conclusions can be drawn. The use of the

answer type taxonomy from Li and Roth [26] is used in nearly all systems. Therefore

this taxonomy can be seen as a state-of-the-art and was also implemented in this system.

The concept of proving facts as presented in [19] was not inherited in the system, be-

cause the work to maintain the MultiNet including all analysis applications was beyond

the scope of this work, but should be tackled in further experiments. Nearly all of the

explored related systems are using a Part-of-Speech tagger as well as a recognizer that

finds named entities. Therefore these parts were also implemented in this system to

handle the grammar of a sentences and find relevant organizations, persons or locations.

The Ephyra system [39] also uses the Indri IR engine for a coarse search. This idea, of a

fast coarse search, was adapted by the system presented here which uses Lucene search

engine. The choice of using Lucene was driven by the slim and fast architecture of the

Lucene system. In contrast to Ephyra, the Qanda system [32] uses Lucene and a mecha-

nism that is called numeric taggers. Beside the extraction of named entities, this system

extracts also numeric values and their corresponding measures. This idea was adopted

for the presented system and implemented into semantic extractors. The AskMSR sys-

tem [2] brought the concept of redundancy to the presented system. AskMSR uses a

14

1. Introduction

redundancy approach to rank the correct answer. The idea behind this is that words

that occur frequently, are possibly the correct answers. In the system that is presented

here, the score of similar answer candidates are accumulated to reach a higher scoring.

The latest system of all presented is the QuASE system of Sun et al. [41]. This sys-

tem has an enhanced approach to handle answer type classification. Instead of a rigid

taxonomy, a graph in a semantic network was used to estimate the answer type. Each

node in the graph has a probability for each answer type. This paper was released after

the work on this system was started. Thus, the findings of this work couldn’t be tested,

but the reflections of the paper together with revealing experiments were added to the

further work section.

1.5. Outline of the Thesis

After this introduction to the topic, the thesis is structured as follows:

Chapter 2, Technical Base Provides an overview of used techniques, databases and

software package to create the Question Answering system.

Chapter 3, The chiAQuery System Introduces the systems architecture, explains the

starting options as well as features and defines the directory structure.

Chapter 4, Text Annotation Explains the procedure of annotating unstructured doc-

uments and the ChiaqueryKnowledge module that takes care of this process.

Chapter 5, Input Processing The way from a question as text input to a question with

semantic interpretation will be explained in this chapter.

Chapter 6, Query Processing All procedures that were done to the semantic inter-

preted input to find answer candidates will be introduced here.

Chapter 7, Answer Selection Explains the approach of selecting an answer or a list of

answers and how they will be displayed.

Chapter 8, Experiments & Evaluation The experiments will be introduced and eval-

uated in this chapter. Furthermore the competitiveness to other systems will be

compared.

Chapter 9, Conclusion & Further Work This thesis can not cover all aspects and op-

timizations of this wide field. Therefore a conclusion of the current system and

further work tasks as well as idea lists will be presented in this chapter.

15

2. Technical Base

In this chapter the technical base of the master thesis will be introduced and explained.

The used notations are explained as well as all measures to evaluate the performance of

the system. Used machine learning techniques are introduced and motivated. Further-

more the used software packages are explained and motivated. These packages are very

important for the success of this work, because they cover a lot of aspects for instance

pre-processing. The used data sources are also named and analyzed in this section.

2.1. Notations & Measures

In this section all used notations and measures are explained. Notations are very im-

portant to have consistent pronunciations and symbols when defining an internal and

external representations of the system. Also unified performance measures are important

to have comparable outcomes of the system. This section also provides an introduction

to all measures used in this thesis.

2.1.1. Answer Type Detection

To process the answer to a given question the system has to determine what the question

is asking for. This task is done by a module called Answer Type Detector. The detector

calculates the confidences of which class is the most likely one. For this the detectors first

feed a feature extractor with the question. This extractor performs the transformation

from an asked question as string to a n-dimensional feature vector which can be seen in

equation 2.1. It finds several characteristics in the string and maps this to the feature

space.

“Wann starb Konrad Zuse?” 7−→
(
f1
...
fn

)
(2.1)

The answer detection then learns the mapping from the feature space (provided by

the extractor) to the classes which the system distinguishes. These classes and their

notations are introduced in figure A.8.

16

2. Technical Base

ENTITY with sub class ANIMAL results in ENT_ANIMAL as class name

As can be seen in this figure the sub classes are denoted with the three first letters of

the main class followed by an underscore as well as the name of the sub class.

2.1.2. Answer Representation

Follwing the detection of an answer type the system also needs to define the way of

representing the answer. For this reason an extractor finds significant features in the

input string and returns a vector representation as already shown in equation 2.1. The

detector of answer representation then uses the extracted feature vector to learn the

mapping to the three classes that can be seen in figure 2.1.

Class Name Description
FACT A question asks for one fact

and nothing more. An example
for this answer representation is:
’Wer war der erste Mann auf dem
Mond?’

LIST The question requires more than
one fact. This list delivers the
most likely facts of the sys-
tem. An appropriate example is:
’Welche Menschen waren zuerst
auf dem Mond?’

PARAGRAPH In contrast to list and fact this
answer representation calls for a
bunch of sentences or a story.
For example: ’Wer war Neil
Armstrong?’

Figure 2.1.: Answer representation types of the Question Answering system

2.1.3. Performance Measures

Following the performance measures used in this work are defined and explained in short.

Machine learning systems need a lot measures to be evaluated accurate and do cover all

expects of failure and faults that can possibly occur during the run of the system. Beside

the theoretically explanation of the measures and metrics, this section also provides a

practical example: medical cancer detection. Let’s assume a classifier exists, that receive

a set of features that are significant for detecting cancer and tries to classify the feature

set into two classes: CD (cancer detected) and NCD (no cancer detected).

17

2. Technical Base

Accuracy

Accuracy is one of the simplest measures for evaluating systems. Equation 2.2 shows

how the accuracy works (the ’#’ stands for ’number of’).

ACC =
correctly classified samples

all samples
(2.2)

This measure returns a percentage value of how many samples of all samples were clas-

sified or rated correctly. To measure a overall performance the accuracy measure can be

used. Applied to the cancer detection example, accuracy points out that the percentage

of all correctly (patients with non cancer to non-cancer class as well as patients with

cancer to cancer class) classified samples divided by all patients that underwent the

cancer test.

Positives & Negatives

To measure positive and negative answers of a system, four measures were developed to

categorize data in four classes. For binary classification where just positives, denoted

with P , and negatives, denoted with N , exist. All of these are described below:

True Positive (TP) This means all samples that were positive (P) and classified as

positive.

True Negative (TN) True negatives describe all samples that were negative (N) and

classified as negatives.

False Positive (FP) This class contains all samples that were wrongly classified as pos-

itives.

False Negative (FN) False negatives contain all samples that were wrongly classified

as negatives.

In statistical hypothesis testing, FP and FN are often named type-I-error and type-

II-error because both are describing a rejection of a null hypothesis. FP describes a

rejection of a true null hypothesis with the detection of an incident that is not present

(type-I-error). On the other hand FN means the rejection of a false null hypothesis

with no detection of an incident that is present.

The cancer detection example can be applied as follows:

TP Contains all patients that were classified with CD and truly suffer from cancer.

18

2. Technical Base

TN Contains all patients that were classified with NCD and truly not suffer from

cancer.

FP Contains all patients that were classified with CD, but don’t suffer from cancer.

FN Contains all patients that were classified with NCD, but actually suffer from cancer.

The four terms TP , TN , FP and FN are used in the following sections to explain more

complex measures.

Sensitivity & Specificity

With the definition of the four variations of positives and negatives two measures can

be specified.

SEN =
TP

P
=

TP

TP + FN
(2.3)

The sensitivity SEN also called the true positive rate (TPR) is defined in equation 2.3.

It specifies the proportion of correctly classified positives (P) to the false negative rate

(FNR).

SPC =
TN

N
=

TN

TN + FP
(2.4)

Specificity SPC or true negative rate (TNR) defines the correctly classified negatives

(N) divided by the false positive rate (FPR). This measure is denoted in equation 2.4.

These both measures can be applied to cancer detection example. Specificity predicates

how good a test performs on avoiding false alarm. The goal is to maximize the TN

(correctly classified NCD) and the minimization of the FP (wrong classified CD). In

contrast, sensitivity also known as recall tries to maximize the detection of positives.

For this the sensitivity tries to maximize the number of TP (correctly classified CD)

and minimize the number of FP s (wrongly classified CD).

Precision & Recall

Beside sensitivity and specificity there are more measures to describe the performance

of a system. To be exact it is just the precision which is a new measure. The recall

measure was formerly introduced in equation 2.3.

PR =
TP

TP + FP
(2.5)

19

2. Technical Base

Precision also named positive predictive value is defined by all correct classified positives

(P) divided to all positive test outcomes. The measure is denoted in equation 2.5.

RE = SEN =
TP

P
=

TP

TP + FN
(2.6)

Recall also called sensitivity (eq. 2.3) defines the correct classified positives (P) divided

by the sum of all samples that are positives by condition (all samples that are labeled

as positives). The precision can be seen as the relevance score. Applied to the cancer

detection sample this test tries to maximize the TP (correctly classified CD) and mini-

mize the FP (wrongly classified CD). To sum up, the test determines how many CDs

really suffer from cancer.

F-Measure

Chinchor [9] proposed the F-Measure at the Fourth Message Understanding Conference

in 1992. It can be seen as the harmonic mean of precision (PR, eq. 2.5) and recall (or

sensitivity, RE, eq. 2.6).

F =
2 PR RE

PR +RE
(2.7)

This measure is widely used to evaluate machine learning systems.

ROC Space

The Receiver-Operator-Characteristics area is often used to evaluate and optimize pro-

cesses in signal discovery. The visualization shows the efficiency in dependence of the

error rate. The application of ROC is to find a optimal value of a parameter, in most

cases, for a two classes problem. In machine learning and information retrieval the ROC

is, for instance, applied to measure the quality of a classifier.

For this the TP (true positive rate) and FP (false positive rate) values of the process

need to be estimated. With this both measures the curve or just a specific point can

be drawn. If the curve approaches to a diagonal the outcome of the process seems to

be a random process. The area under the curve can be seen as the quality of the pro-

cess. The larger the area the higher is the quality of the process. Figure 2.2 shows an

example ROC space with classifier results and there true positive rate to false positive

rate measure. This example shows just one data point (a true positive rate with the

corresponding false positive rate). Applied to the cancer detection example the ROC

space depicts the correctly classified CD (patients who really suffer from cancer) on the

20

2. Technical Base

Figure 2.2.: An example ROC space that shows the true positive rate on the y-axis and
the false positive rate on the x-axis.

y-axis and the wrongly classified CD (patients who are classified as ’suffer from cancer’

but the don’t) on the x-axis.

2.2. Machine Learning Techniques

For this work a few machine learning techniques are used to train statistical models.

In this section these techniques are shortly introduced to get a comprehensive under-

standing of the models. The motivation is not to fully explain all of these techniques in

detail with the corresponding theory. Here, just the basics are presented. For further

and deeper explanations follow the cited works.

2.2.1. Naive Bayes Classifier

The Naive Bayes classifier is one of the simplest classifier that are based on the frequency

table concept. The classifier itself can be defined as a function b that projects a n

21

2. Technical Base

dimensional vector to a class C.

b : Rn → C (2.8)

The classifier solves the problem in equation 2.8 by using the Bayes’ theorem which

describes the probability of an event based on another condition. The probability of an

event is denoted with P (A) which points out the probability of event A to occur. The

probability of occurrence of an event B under the condition that event A also occurs is

denoted with P (A|B).

P (A|B) =
P (B|A)P (A)

P (B)
(2.9)

Equation 2.9 presents the Bayes theorem that is used to calculate the confidence values

for the classes. For this calculation a possible formula could be to calculate P (C1|F1).

This points out the probability of class C1 when feature F1 occurs. According to equation

2.9, the event A equals the event that a class (in this case class oneC1) occurs and the

event B equals the occurrence of feature F (here feature one F1). For this classifier a

few different implementation exists, for instance: Gaussian naive Bayes, Multinomial

naive Bayes and some more. To understand the theorem equation 2.10 explains the

conceptional meaning of the probabilities.

posterior =
likelihood× prior

evidence
(2.10)

The implementation of this classifier can be seen as data-driven analysis using a his-

togram of appearing features. The appearance of each event (class or feature) will be

counted as well as the combined appearance of them. After that the theorem can be

applied on the histograms.

This classifier is often used in Natural Language tasks for instance:

• Spam Detection

• Sentiment Analysis

• Text Classification

Beside the tasks mentioned above there are a lot of other tasks in the area of machine

learning that are using Naive Bayes as a baseline method.

22

2. Technical Base

2.2.2. Multilayer Perceptron

This classifier is motivated by the biological model of the human brain. The brain

consists of a huge number of brain cells (called neurons) that have connections to other

cells through synapses. The brain works with electric potentials and stimulis. If a neuron

gets stimulated with an electric stimuli it fires and propagates the potential through the

parts of the neural network. One way how the brain learns is to adjust the synapse

(and the synaptic cleft). The more important the information is (and the event of

remembering was triggered) the thicker the synapse and the layer of myelin around the

synapse get. To bring this model to the computer the neurons are used as calculation

nodes and the weights (synapse) between neurons are adjusted during training time.

The procedure of adjustment is called back propagation where the output of the net

is compared to the correct output and then the weights are adjusted to match the

output using a step range variable or learning rate (often denoted as η). The multilayer

perceptron is a special case of an artificial neural network which works in a feed-forward

manner. This means that each neuron from a layer is connected to all neurons from

the next layer. This principle is also illustrated in figure 2.3. The figure provides

Figure 2.3.: Visualization of an mulitlayer perceptron. The feature vector is applied on
the input layer and forward propagated to the output layer.

a visualization of a multilayer perceptron where X ∈ {x1, ..., xn} denotes the feature

space (input, the properties to classify), wi,j the weight from neuron i to neuron j and

y ∈ {y1, ..., ym} denotes the classes to classify in. To provide a comprehensive example,

23

2. Technical Base

the classification of questions will be explained in short. After a visual inspection into

the data (a set of questions) maybe the idea that the words ’Where’ or ’Wo’ point to

a possible class ’location’ comes up. This can be seen as a typical feature and the

appearance of this word seems to be significant for the ’location’ class. Therefore this

feature can be added to the feature vector (for instance in a binary manner, appears

or not). For each possible class features need to be found and added to the vector.

This procedure is called feature extraction. After the engineering of each feature, the

transformation from question string to feature vector can be made. The neural network

learns the representation from feature vector to the class label (in this case ’location’).

During the training of the neural net, the algorithm tries to minimize the error (delta)

between the wanted output and the calculated ouput. When the neural net is used for

classification tasks, then the output of the net contains the confidences (a real number

in the range [0, 1]) for each class with a given feature vector.

An artificial neural network is trained with a back propagation algorithm. This algorithm

works in the following steps during training time:

1. An input pattern {x1, ..., xn} will be forward propagated through the net.

2. After that the produced output will be compared with the correct output.

3. The difference (delta) can be seen as the error and the algorithm propagates back

though the net and adjusts every weight concerning to its influence to the error

value.

2.3. Software & Frameworks

On the following pages the software that was used to complete the work in this thesis

will be introduced. Question answering is a strong research area of Natural Language

Processing wherefore a wide range of reliable frameworks is necessary. The system that

is described here needs a fast and reliable pipeline to train statistical model, this pipeline

will be realized using KNIME and Wek3. Both applications are described in sections

2.3.1 and 2.3.2. To realize a complex system that answer questions a reliable framework is

needed that is able to cover all necessary and basic tasks of modern question answering

systems. For this the thesis uses Stanford NLP Core which contains Part-of-Speech

taggers and models that find named entities (like persons, locations and organizations)

in german text. Stanford NLP Core will be introduced in section 2.3.3. A coarse search

on indexed knowledge is realized with the Apache Lucene system. More details on this

24

2. Technical Base

systems are provided in 2.3.4. Especially to tackle the open domain question answering

task, a system that scrapes and handles web documents is needed. For the presented

system the two applications JSoup and Palladian are used and introduced in section

2.3.5. At last, the serialization of the results and documents is an important feature.

The system solves this task using the GSON library which will be introduced in section

2.3.6.

2.3.1. KNIME - Konstanz Information Miner

To have a fast pipeline to prototype experiments and to test features KNIME1 can be

used. KNIME was developed by the University of Konstanz in cooperation with software

developers from silicon valley and first applied [43] in the area of biology and chemistry

The work flow can be seen as tool or processing chain where each processing step has

input and output and additional steps can be added using a graphical UI. Furthermore

KNIME provides a rich tool set with a lot of functionality that can be parameterized,

executed and easily substituted with other processes that the tool chain needs. For this

thesis KNIME was used for:

• Evaluate the quality of features with machine learning models and visualize results

• Write arff files to train models and other I/O tasks

• Explore questions, feature vectors and other data

• Transform, filter and convert data

KNIME was released under GPL license.

2.3.2. Weka3

The Waikato Environment for Knowledge Analysis [20] was introduced in 1997 by Cun-

ningham [11]. Since then the framework was developed to classify, cluster, analyze and

visualize data sets. The fields of application are very wide. To train statistical models for

this thesis Weka was used to easily generate a model from a given .arff file. The frame-

work offers all common used machine learning techniques with all needed parameters for

these tasks. Furthermore it is possible to integrate the Weka environment into the code

of the software that was developed during the work on this thesis. This integration can

1Project page http://www.knime.org/

25

2. Technical Base

Tag Meaning
I-LOC location
I-ORG organization or company
I-PER person or human-like object
I-MISC other entity

Figure 2.4.: List of all named entity classes of the Stanford Core NLP tagger

simplify the analysis of data and training of models which then leads to a one-click task

to train more accurate models on new data or to rearrange an experimental stage.

The Weka3 framework was released under GNU General Public License.

2.3.3. Stanford NLP Core

The Stanford NLP Core [31] package is developed and maintained by the NLP Group2 of

the Stanford University. The software contains POS taggers, named entity recognizers,

annotators, tokenizers, sentiment analyzers, regex tools and a bunch of more tools for

multiple languages. This packages is often used for complex NLP tasks to reduce the

complexity of text.

In this thesis only the Part-of-Speech tagger as well as the named entity recognizer are

used. The Stanford NLP Core is licensed under GPL3 version 3, some parts of it are

still licensed under version 2 or version 2+.

Named Entity Recognizer

The system proposed in this thesis works with a model that was trained on the HGC

(Huge German Corpus) corpus from CoNLL4 2003. The data consists of 175 million

tokens from German news-wire data that was clustered into 600 clusters. The recognizer

(based on a CRF model) was, beside others, described in [42] and the trained model was

proposed in [13]. The model was released under a simple GPL license. The provided

classes of the Named Entity Recognizer are shown in figure 2.4.

2Web site of the Group: http://nlp.stanford.edu/
3GNU General Public License
4Conference on Computational Natural Language Learning which took place in Edmonton at May 31

and June 1.

26

2. Technical Base

Part Of Speech Tagger

The POS Tagger finds grammatical parts in the input text is implemented as a Maxium-

Entropy Model (log-linear) and was proposed by Toutanova in [44] and [45]. The trained

model is based on the NEGRA [5]corpus that was tagged with the STTS tag set [38]

which consists of 54 different tags. These tags are listed in figure A.9. Stanford Core

NLP provides a few trained models but the work in this thesis uses the german-fast

tagger which is significantly faster and provides the best speed to accuracy ratio for the

needs of this work.

2.3.4. Apache Lucene

Lucene is a project of the Apache Software Foundation and often used by internet and

other information technolgy companies for term search in big data sets. Lucene itselfs

creates an index based on the occuring words and is able, based on these statistics, to

find the most related documents. For Question Answering tasks Lucene can provide the

coarse document search to filter all irrelevant documents that have no connection to the

question asked. In the software that was developed for this thesis, Lucene was used with

the GermanAnalyzer and some parts of the system are using the GermanStemmer as

well. Both parts of Lucene are described below:

Search using GermanAnalyzer Lucene uses analyzers to analyze documents as well as

the incoming query. To get more accuracy out of the data the analyzer of the

target language shall be used. This analyzer adds the language-specific Standard-

Tokenizer, StandardFilter, LowercaseFilter, StopFilter and GermanStemFilter to

the processing pipeline.

Stemming using GermanStemmer The stemmer is based on a proposed stemmer from

Caumanns [8]. Stemming means the reduction from a given word to its stem (root

word). To put similar words in the same bucket during processing can help to find

relations and also reduces complexity of data. For index structures a stemmer can

be applied, where the stem can be used as a key which points to a list of words or

a list of sentence ids that contain this or similar words with the same stem.

Apache is known for using the Vector Space Model and the TF-IDF measure. This

software was released under Apache License 2.0.

27

2. Technical Base

2.3.5. JSoup and Palladian

Two frameworks for web crawling and scraping are JSoup5 and Palladian6. JSoup was

developed by Jonathan Hedley with the ability to scrape and parse HTML files from

files or strings, find and extract DOM elements, manipulate HTML elements and tidy

up the HTML code. This project uses JSoup as one of two frameworks that are tested

for the optimal web scraping technique for Question Answering on websites. JSoup was

released under the MIT license.

Palladian was developed at the TU Dresden and released under Apache License 2.0. It

provides text classification, language detection, keyword extraction, content extraction,

web search, web crawling, web feed detection and sentence splitting to name just a

few. For this work Palladian was used to evaluate the readability performance and the

performance of the main content extractor against JSoup.

2.3.6. GSON - Google JSON

Google developed GSON7 as a JSON library to extend the Java Generics. GSON is able

to convert Java object into JSON objects and backwards. This can be very helpful if

you want to print objects and serialize them in a readable and easy manner.

This project uses GSON to:

• Serialize annotated documents (readable and JSON compliant)

• Serialize system states to disk

• Debugging and printing of complex structures in CLI

• Realize an easy API for server/client architecture

The software was released under Apache License 2.0.

2.4. Data Sources

To train models and to provide semantics to enrich documents and queries a lot of

data is needed. This section deals with all sources that are used to create semantic

information and connect words and meanings with each other. Also models need to be

5Project page http://jsoup.org
6Project page http://palladian.ws
7Project page https://code.google.com/p/google-gson/

28

2. Technical Base

trained and therefore a huge set of data was annotated for this. A source that contains

synonyms and other linguistic relations are needed to extend a possible query to the

system. Therefore the GermaNet was acquired and will be explained in section 2.4.1.

Another important task is to find semantic frames and relations in words. To tackle this,

the SALSA project is used. It contains the largest database of word to semantic frame

mapping for the German language and will be described in section 2.4.2. Classifiers need

a lot of training and testing data. For this task no data exists, so data was created and

labeled only for this work (section 2.4.3). The presented system was originally created

to answer closed domain questions on a given data set. This data set will be described

in section 2.4.4.

2.4.1. GermaNet

The German counterpart to the WordNet [14] is called GermaNet [21] [24] and contains

lexical-semantics of German verbs, nouns and adjectives. The GermaNet was developd

by the University of Tübingen and available under Academic Research License, Research

and Development License and Commercial license. For this work the data was acquired

using the Academic Research license. For the current version 10.0 the content of the

GermaNet can be seen in figure 2.5. For this thesis the GermaNet is used to find semantic

Parts #
Lexical units 131814

Conceptual relations 114619
Lexical relations 4199
Split compounds 54572

Interlingual Index records 28567
Wiktionary descriptions 29535

Figure 2.5.: GermaNet statistics of version 10.0

relations in documents and incoming queries. After this the data can be extended or

semantic concepts can be applied to the data.

2.4.2. SALSA

The SALSA8 project [12] of the University of Saarbrücken provides a large and frame-

based net for German language. The data can be used to detect semantic frames in text

8Saarbrücken Lexical Semantics Acquisition Project

29

2. Technical Base

with rich semantic and syntactic properties and examples. The english counterpart is

the FrameNet and SALSA follows the internal structure of FrameNet as well.

For the Question Answering system developed in this thesis the uses SALSA to find

semantic frames in the documents and the incoming questions.

2.4.3. DATD & AR Data

This data was annotated just for this thesis to train the models for the:

• Answer Type Detector which is denoted with DATD and

• Answer Representation which is denoted with AR.

The annotators of this data are asked to write down questions for each class of the class

set that can be seen in A.8. Furthermore the task of the annotators includes 4 up to 5

questions for each specific sub class with a given annotation schema. These data sets can

be seen in figure 2.6. The data sets are used in chapter 8 for experiments and evaluation

name # description

DATD-1 1543
Recorded by annotators for
DATD task

DATD-2 733
Based on randomly chosen sam-
ples from DATD-1. Questions are
modified for testing process.

AR 502
Recorded by annotators with AR-
specific labels

Figure 2.6.: Self annotated data sets used in this thesis

of the proposed system.

The annotation follows the structure that is shown below:

class#subclass#question

Applied to an example the annotation for an ENTITY sample (answer type classes are

explained in section 2.1.1) that relates to the sub class PLANT looks like:

ENT#ENT_PLANT#Welche Pflanzen wachsen in Südamerika?

All annotators are listed in A.3.

30

2. Technical Base

2.4.4. TSDD Data

This data set represents the content from the Technische Sammlung in Dresden. The

robot of the HTW Dresden was build to serve and guide visitors through the exhibition.

This vehicle was one of the target systems for the software system developed from this

thesis. To answer factoid questions, the robot should retrieve information in a closed

data set and then try to answer the question.

The data consists of texts from the exhibition and related material grabbed from slides

and web pages. Currently the set includes 21 documents. The data consists of simple

text files that contain text and sentences.

31

3. The chiAQuery System

In this chapter all crucial structures and necessary surroundings of the introduced sys-

tem, called chiAQuery, are explained. This starts by an system overview, continues

with all features, options to start the systems and ends up with all needed and acquired

databases to create a question answering system. The detailed overview of the system

can be seen in figure A.7.

3.1. System Overview

This section provides a coarse overview of the system and explains all necessary terms.

The system was developed to perform question answering tasks on a set of unstructured

text documents. As can be seen in figure 3.1 the system parts can be divided in four

main parts. These for main parts are also shown in detail in the system overview figure

A.7.

Before the processing of any input can be started, the system needs documents for an-

notation. This can be seen as the step to process unstructured documents to structured

documents. The sources can be local documents as well as web documents, which then

get another preprocessing workflow to separate the main content from the rest of the

web page. The process of text annotation will be explained in detail in chapter 4, Text

Annotation. After the system indexed the provided documents to its knowledge the first

query can reach the system. For this procedure the process of Input Annotation was

established. The workflow is similar to the Text Annotation procedure with the reason

to have comparable texts that, in the best case, can match with a part of an annotated

document. Chapter 5 describes the procedure with more depth.

The given input and the given knowledge are then processed. Queries are generated out

of the input and the relevant parts of the knowledge are extracted. The resulting docu-

ments in the knowledge are then used to traverse through them using query plans and

find answer candidates. Query Processing will be explained in more detail in chapter 6.

Towards the answer candidate creation the candidates are sorted out, filtered and the

32

3. The chiAQuery System

Figure 3.1.: Coarse overview of the Question Answering process

scores are compared to find the most likely answer. The answer is then set and the

estimated display options are chosen for a correct answer representation. More insights

of the Answer Selection process are shown in chapter 7.

3.1.1. Request & Response

The system was designed to be flexible. The Question Answering component can be

seen as one functionality and the system can be easily extended with other features, for

instance Text Analysis (find all relevant locations, persons and organizations relating to

the input) or Term Exploration (explore the semantic relations of a term). To realize

this, a request to response structure was established to:

• Encapsulate all internal objects from the outside of the system

• Easily parse an incoming request to the server and

• Provide a standardized response from the server.

The request and response handling is not only used in client/server mode. It also takes

place when the system is started on the command line. The command line interface

(CLI) also sends a request to the system and get a returning response.

For the client/server mode the Request as well as the Response object are serialized as

JSON objects to ensure an easy handling and a fast rejection if the incoming Request

is not well-formed.

A Request object consists of the following attributes that must be set to handle the

request successfully:

get This defines the used branch of the system. Currently the only registered branch is

the qa or questionanswering branch.

33

3. The chiAQuery System

As can be seen in figure 3.2 the Request and Response objects are always at the
beginning and at the end of a process through the system.

Figure 3.2.: Request to response structure of the system to handle all incoming queries.
This figure is focused on the QA branch.

operation The operation points out which operation should be shall be called in the cho-

sen branch. For the qa branch the operation question predicates that this requests

brings in a question. Another operation for the branch of Question Answering can

be another input type or a stats operation that

query Defines the query to the system. The query depends on the get and operation

parameter.

options The option values can be set to commit special parameters to the system to

control the behavior. The qa branch uses this options to set the source of Question

Answering (web or local).

A Response object is defined using the following attributes:

processed This attribute points out whether the request was processed or not. If it was

not processed a failure in request formulation can be a possible reason. Another

reason can be a missing module or branch as well as a operation that was not

defined.

message The response message contains the message of the system. For the qa branch

it should contain the answer, if an answer was found.

34

3. The chiAQuery System

{

"query": "Wann kamen in der DDR die ersten Heimcomputer in den Handel?",

"operation": "question",

"get": "qa",

"options": {

"source": "web"

}

}

Figure 3.3.: A sample request to the QA branch of chiAQuery system. Displayed with
JSON format

responseType If the type of response equals the operation (that was defined in the

request) the system understands the request and provided an appropriate response.

finalRepresentation The representation of the response predicates how the response

must be interpreted. For the qa branch, the representations are defined in section

2.1.2.

responseObject Contains the object that the system responded to the request.

{

"processed": true,

"message": "1984",

"responseType": "QUESTION",

"finalRepresentation": "FACT",

"responseObject": <complete response of QA process>

}

Figure 3.4.: A sample response from the QA branch of chiAQuery system. Displayed
with JSON format.

Figures 3.3 and 3.4 show a request and the corresponding response of the system. In

this example the qa branch of the system is requested. The question comes in with the

Request object as well as all necessary parameters and the Response object returns the

answer. Both objects are shown in their corresponding JSON representations.

3.1.2. Question, Query & Answer

Three classes that are important to understand the systems behavior during the Question

Answering task are Question, Query and Answer. Chapters 4, 5, 6 and 7 are dealing

35

3. The chiAQuery System

with these terms. All three terms are conceptual classes of the system and designed to

express the processing steps of the current request. These three terms are explained in

detail below:

Question This object holds the incoming question. During the process of Input Pro-

cessing (explained in chapter 5) all modules that are used to normalize, analyze,

detect and tag the question are read and write the given Question object. It also

contains the answer representation and the estimated answer type.

Query The structure holds the queries that are created to request the Lucene search

system (theoretically explained in section 2.3.4 and practically shown in section

6.2) and their scores. The Query objects also holds the generated query plans for

the question answering process (explained in chapter 6).

Answer An answer is created during the Answer Selection process (explained in chapter

7). It contains the answer string as well as the final estimated representation

type. A list of the most likely answer candidates is also given. If an exceptional

question was detected, then an attribute called exceptionalAnswer points out that

the answer was created during an exceptional answer procedure. The approach of

exceptional questions is explained in section 3.1.4.

To sum up this section a few summarizing words about these three classes (and con-

cepts) are needed. The Question object contains all the information retrieved about the

incoming question. It also contains the Answer object. The Query object contains all

information that the system needs to guide from an incoming question to an outgoing

answer.

3.1.3. Knowledge

During the QA process the system needs knowledge to search for answers. This knowl-

edge is represented by an object called ChiaqueryKnowledge. Figure 3.5 shows the

interaction of the module with its environment. ChiaqueryKnowledge is used to:

• Annotate unstructured documents

• Index documents into systems knowledge

• Perform web search with given terms and given search engines

• Index web documents on the fly

36

3. The chiAQuery System

Figure 3.5.: Visualization of the ChiaqueryKnowledge module. Unstructured documents
are indexed in into the local knowledge. During execution time the module
is able to lookup the web for relevant documents.

• Writes to the document cache for web documents

• Handling of Apache Lucene searcher

The knowledge module can be seen as a contact point for the system to reach the indexed

data. During the process of QA this module is used to firstly perform the Lucene search

that returns interesting documents and to secondly open and read the annotated files

that are corresponding to the hits of the Lucene system. This leads to two separate

indexes. The first index reads the raw unstructured data. The measures for document

ranking are Lucene specific. Generated queries from the system are used to get relevant

documents from this first index. Subsequently, the second index comes into play. All

retrieved and ranked documents from the first index (Lucene index) are opened and

converted to Java objects that the system can use for ranking sentences, terms and

furthermore possible answer candidates.

3.1.4. Exceptional Question Handling

The system is flexible and extensible in the way it answers questions. To establish a

new routine to handle a certain type of questions the system can be advanced by a new

exception question routine. Figure 3.6 points the conceptional attempt of the exception

handling. The exception handling has two main parts that must be changed if a new

answer routine shall be established. These two were explained below.

ExceptionalQuestionDetector

The detector finds patterns in the question and decides whether it is an exceptional

question or not. These patterns are simple text patterns and matcher that are ordered

37

3. The chiAQuery System

Figure 3.6.: Visual explanation of the Exceptional Question Handling. Exceptional ques-
tions are skipping the common QA procedure and can be answered using
the handler.

by priority. If a pattern was found the detector sets the exceptionalQuestion attribute

of the Question object to a different value than NO EXCEPTION. These values are

also defined in the ExceptionalQuestionDetector. Another attribute that the detector

uses it the appendix attribute of the Question object. It is used to transport important

data from the ExceptionalQuestionDetector to the ExceptionalQuestionHandler that is

needed to process the handler function. This part of the system also defines which

processing parts of the common QA system are not needed and can be skipped.

The detector can be easily extended using a custom routine to find exceptional patterns

in the question and a value need to be defined to identify the type of exceptional question

in the ExceptionalQuestionHandler.

ExceptionalQuestionHandler

After the detection of an exceptional question and the conditional execution of all parts

of the QA system the ExceptionalQuestionHandler will be called. If the attribute ex-

ceptionalQuestion contains a different value than NO EXCEPTION the handler tries

to find the correct function for the exceptional question and processes the values in the

appendix attribute of the Question object.

After that the result of the handler function will be set as the correct answer for this

question request.

Example of Exceptional Questions

The current system contains the first implementation of an exceptional question. These

exceptional questions are containing a computational calculation task for the system.

38

3. The chiAQuery System

For this task the PHP expression parser1 of the author was rewritten in Java and used.

Therefore the rules for an exceptional treatment are as follows:

• Question starts with ”Was ist” followed by a computable expression

• Question starts with ”Wieviel ist” followed by a computable expression

An example for this can be seen below:

Was ist 4*5/2?

The ExceptionalQuestionDetector detects this form of question and sets the necessary

flag for exceptional questions and it also manipulates the array of variables to skip pro-

cessing steps. If the common QA pipeline was passed, the ExceptionalQuestionHandler

handles all questions that are flagged as exceptional. The handler contains functions

that then handle the question in a certain way. For the example, the Ipsum parser

parses the incoming expression and returns the result. The resulting answer can also be

set in the handler with the certain output that the exceptional type requires.

3.1.5. ChiaqueryHelper

During the development of the system, a lot tasks are recurring each time a feature

was established. To have one proven routine for these tasks, the ChiaqueryHelper was

developed. This class holds all facilities that are often needed, simplify the development

and manage simple operations. It was implemented as a static class and can be called

system-wide without instantiating as an object.

The helper takes care of the following tasks:

• Read separated files to lists

• Read separated files to hash maps

• Read JSON serialized objects

• Write and print JSON serialized objects

• Produce the MD5 string of a string input

• Print help texts

1Project page of the Ipsum parser in PHP http://www.cip-labs.net/projects/ipsum/

39

3. The chiAQuery System

• Write to debug or log files (or both, it is called tell)

The helper class is often used to read databases and models, files for the feature detector

and to serialize the current system state. The use of Google GSON brings a high degree

of flexibility to the system.

3.2. Features & Starting Options

In this section all starting options of the system are explained in detail. These options

are useful to start the system in the correct mode and to use all of the given options,

for instance to train new models or to search the local index.

3.2.1. Question Answering

The command line switch to start in Question Answering mode is qa. This switch starts

the Question Answering branch of the system with the default database (which is local).

If you want to use web sources, the system needs to be started with qa web. The explicit

switch to use the local sources is qa local.

In both cases the ChiaqueryQA module is loaded and the ChiaqueryQACLI (command

line interface) shows a prompt that is awaiting the input as question.

Another command line switch is the qa benchmark option. This starts the Chiaque-

ryQABenchmark module and also awaits a file name that provides an annotated bench-

mark file. This annotation is presented in section 8.1.3.

Below all four options to start the QA branch of the system are shown:

java -jar caqy.jar qa

java -jar caqy.jar qa web

java -jar caqy.jar qa local

java -jar caqy.jar qa benchmark <benchmark_file>

3.2.2. Client Server Architecture

One requirement of the system (defined in section 1.2) was to create a client-server archi-

tecture to execute the system on small clients that have not enough capacities to reading

and writing the documents as well as calculating the correct response with regard to the

40

3. The chiAQuery System

speed.

The communication between client and server works with just 2 classes. The clients sends

a request to the server. The server responds. This simple communication was realized

with the use of two classes: Request and Response. These both classes were explained

in section 3.1.1. These classes were initialized for a request or response and serialized as

string using the GSON library (introduced in section 2.3.6). The receiver of the message

uses the GSON library to deserialize the message and to transform it to an object. This

simplifies the communication between client and server and breaks the learning effort for

the API (Application Programming Interface) down to the understanding of two classes.

The command line switch to start the application as client or server are introduced

below. To start the system as the server the declaration of a port is necessary:

java -jar caqy.jar server 27025

Starting the system as client requires the host (as IP address or host name) and the port

where the server is listening:

java -jar caqy.jar client localhost 27025

The named port must be unused from other programs on the server machine.

3.2.3. Indexing & Search

To use a local knowledge for question answering the system needs unstructured doc-

uments to index them. The location of these files can be set in the config file of the

system. To start indexing all files the command line switch index is used. To search

in the local knowledge or to retrieve documents that are relevant to a given term the

command line switch search is used. After all the work is done or another knowledge

base should be indexed the command line switch clearIndex can be used.

java -jar caqy.jar index

java -jar caqy.jar search "Zuse Z3"

java -jar caqy.jar clearIndex

3.2.4. Feature Detectors for Model Training

To have a fast workflow of data input and feature vector output this command line

switch was developed. The data samples can easily read and the corresponding feature

41

3. The chiAQuery System

vectors were printed to use them for creating an ARFF file. After that this file can be

used to train models (artificial neural network, support vector machine, random forest

and so on).

Currently the chiAQuery system offers two different types of feature detectors for the

training. The first is the answer representation (AR) and the second is the answer type

detection (AT). The feature detectors of both of them can be called using the command

line switch features in combination with the feature detector: v2AT, v3AT, v4AT and

v3AR.

java -jar caqy.jar features v2AT <annotated file>

java -jar caqy.jar features v3AT <annotated file>

java -jar cagy.jar features v4AT <annotated file>

java -jar caqy.jar features v4AT_<classes> <annotated file>

java -jar caqy.jar features v3AR <annotated file>

The procedure and notation for an annotated file is described in section 8.1.1. For
all v4AT variants the previous and initially execution of the Bayes training is neces-
sary. Therefore, the annotated files for the 6 master classes and the sub classes must
be provided. The following commands are necessary to train the Bayes-based feature
extractor.

java -jar caqy.jar trainBayes databases/datd/sets/classes.phrase

java -jar caqy.jar trainBayes databases/datd/sets/abb.phrase ABBREVIATION

java -jar caqy.jar trainBayes databases/datd/sets/des.phrase DESCRIPTION

java -jar caqy.jar trainBayes databases/datd/sets/ent.phrase ENTITY

java -jar caqy.jar trainBayes databases/datd/sets/hum.phrase HUMAN

java -jar caqy.jar trainBayes databases/datd/sets/loc.phrase LOCATION

java -jar caqy.jar trainBayes databases/datd/sets/num.phrase NUMERIC

Above the parameter to start the process of feature detector/extractor training can be
seen. This process produces JSON-like representations of the Naive Bayes model. Below
an example application for the feature detection is illustrated. This process produces a
comma seperated value file that contains the feature vectors and the corresponding class
of phrase from the phrase file.

java -jar caqy.jar features v4AT databases/classes.phrase > models/classes.csv

java -jar caqy.jar features v4AT_ABBREVIATION databases/abb.phrase > models/abb.csv

java -jar caqy.jar features v4AT_DESCRIPTION databases/des.phrase > models/des.csv

java -jar caqy.jar features v4AT_ENTITY databases/ent.phrase > models/ent.csv

java -jar caqy.jar features v4AT_HUMAN databases/hum.phrase > models/hum.csv

java -jar caqy.jar features v4AT_LOCATION databases/loc.phrase > models/loc.csv

java -jar caqy.jar features v4AT_NUMERIC databases/num.phrase > models/num.csv

42

3. The chiAQuery System

3.2.5. Annotation

To have the text annotation procedure (described in chapter 4) easy testable and us-

able as a stand alone application the command line switch annotate was developed.

With this option, an unstructured document can be transformed into the same JSON

representation that the system uses to do the Question Answering task.

java -jar caqy.jar annotate <text file>

3.2.6. Help

The help command line switch displays the help menu of the system. If the system did

not start correctly or another command line switch shall be looked up, this switch can

be used.

java -jar caqy.jar help

3.3. Created Databases & Models

The task of Question Answering requires a lot databases and models that extract in-

formation from text and transform text to syntactic and semantic interpretations. All

of these databases and models are listed in this section and all basics are explained to

get an understanding about their functionality and use for the system created for this

thesis.

3.3.1. SemMap

SemMap was created for this thesis. The origin of SemMap is the SALSA project that

was explained in section 2.4.2. During the development of the thesis some problems of

the SALSA network were identified:

• Duplicated frame names

• Sparse members in frames and

• The graph format was to slow for the requirements of the system

After noticing these problems the idea to realize an own semantic network was born. For

this the semantic frames and their members were used to create a JSON-like representa-

tion of the data. A semantic frame groups words that have a similar semantic meaning

43

3. The chiAQuery System

Attribute #
Frames 265
Words 1893

Words per Frame before Enrichment 5.24
Words per Frame after Enrichment 7.14

Figure 3.7.: Statistics of the current SemMap version implemented in the system

or intention under a corresponding semantic label. In contrast to SALSA, some frame

names were reduced to avoid duplicates. To enrich the words of the SALSA data set,

all synonyms found in GermaNet for each word were added. The enrichment with Ger-

maNet synonyms and the cleaned SALSA structure result in the currently most complete

semantic frame database for the german language. One of the further development goals

of SemMap is the training of frame correlations between each frames. Figure 3.7 shows

the number of words and frames as well as the word to frame ratios. With SemMap the

application is able to find semantic relations in the text to get a deeper understanding

of the input text.

3.3.2. SynMap

The creation of SynMap was caused by the complexity of GermaNet and its loading

time. GermaNet was just loaded once and during the execution held in a hash map

which provided more performance in speed than the GermaNet implementatioin with

jGraph2. The loading times are compared in figure 3.8. Beside this the words are split

Database Loading Time
GermaNet 40.0 sec
SynMap 0.3 sec

Figure 3.8.: Comparison between SynMap and GermaNet speed

into three different files. These files are divided into adjectives, verbs and nouns. The

numbers of words for all of these three files are illustrated in figure 3.9. The quantity

of data from GermaNet was seamlessly assigned to SynMap. It is important to mention

that just the synonym (synset) relation of the GermaNet relation was used. ’Syn’ in

SynMap stands for synonym and therefore it contains just synonyms of words. The

benefit of this structure is the division in these three parts and the easy handling using

a JSON parser.

2A Java implementation for manipulating and querying through a graph structure.

44

3. The chiAQuery System

Database # Elements
adjectives.json 4634

nouns.json 31603
verbs.json 3899

Figure 3.9.: Content of SynMap files

3.3.3. Verb Database

This database is used for the VerbNormalizer which tries to normalize the verb and get

to know the tense (temporal form) of the verb. Therefore a bunch of often used verbs

are annotated. The annotation is shown below:

...

waren;sein;PAST

sind;sein;PRESENT

werden;sein;FUTURE

...

The verb is followed by the normalized form and the tense of the verb. With this

annotation the information of the verb changed from its activity to its activity plus the

time of this activity. This is very helpful if the question asks for a date in the past,

present or future. For this data set the often used verbs are annotated. At the moment

the database consists of 669 annotated verb forms.

3.3.4. Pronoun Database

Having objects (or subjects) in a question can cause the use of a pronoun. These pro-

nouns betray the secret whether the object is male, female or neuter. The pronoun

database contains the often used pronouns with the corresponding gender. The annota-

tion is shown below:

...

ihre,FEMALE

seine,MALE

es,OBJECT

...

At the moment of writing this database contains 10 entries. The mechanism behind this

database is that if one of these words occur in the text, the named entities that appeared

45

3. The chiAQuery System

previously in the input are labeled with a possible gender flag.

3.3.5. Acronym Database

Acronyms are very hard to understand. Using a single token like the dollar sign has

a semantic meaning which must be decoded to work with it. Beside single tokens an

acronym can also be a few letters that stand for a longer word. This database covers a

few of them and contains, at the moment of writing, just 5 entries. The problem is that

the number of abbreviations and acronyms are too large and a lot of them are ambiguous

with different meanings in different fields. For this, the system has this interface to feed

the database with acronym knowledge about a specific topic.

...

usw.,und so weiter

NLP,Neurolinguistische Programmierung

...

The annotation can be seen above. The acronym is followed by its longer version. If

a word from the database was found in this database, the long version is set to the

vector that contains alternative forms of this word which helps during search and query

execution.

3.3.6. Filter Database

To filter wrongly annotated answers from the set of answer candidates the filter database

contains words, that are very unlikely to be a possible candidate. The list contains 223

elements and can be easily extended. This database has no special annotation. The

words are in form of a list. If one of these words occur in an answer candidate, the

candidate will be dropped.

3.4. Directory Structure

databases This folder contains all databases, lists, sources, experimental documents and

data that exists in plan text format and was used for test, evaluation or during

the execution of the system.

docs Documentations, task lists, change logs, example output and the special explana-

tions are grouped under this folder.

46

3. The chiAQuery System

documents Here, all text documents are located that serve as a knowledge source to

the system. The standard path to index documents is built into the system.

knowledge This directory holds the index from the data from the documents/ directory.

It contains the Lucene index and the annotated documents index.

logs The query log and the system log can be accessed here.

models POS models, NER models and all other statistical or trained models can be

found here. It also contains the results and classifier output from training, evalu-

ation and testing.

scripts The system needs some scripts for text format transformation and a few more.

These scripts can be seen here.

47

4. Text Annotation

Here and in the following sections of this chapter the steps to annotate a plain text

document are described. If a unstructured document (that means plain text) reaches

the system, a few steps to structure the document are necessary. All of these steps will be

described in this chapter. At first the document needs to be preprocessed. Preprocessing

means that the text will be cut into sentences. Furthermore the preprocessor normalizes

letters and token. This part will be described in section 4.1. The Part-of-Speech tagging

is necessary to estimate the most likely grammar parts of the sentences which are later

used to find targets like verbs, adjectives or nouns. The tagger will be described in section

4.2. Beside the tagging of the grammar, named entities are another important part of

the sentence that needs to be estimated. Named entities contain locations, persons and

organizations. The important task to find these entities in the text will be introduced

in section 4.3. As already mentioned, normalization is crucial to make text comparable.

Normalizers that deal with verbs (find the correct tense), symbols (find the long form of

a symbol), acronyms (find the long form of an acronym), pronouns (estimate the gender

and replace pronouns) and numbers (find written-out numbers and transform them) are

described in section 4.4. Finding synonyms of words is important to extend a query

with similar words that might help to find the right answer. SynMap was implemented

for this task and the corresponding processor will be described in section 4.5. A text

contains a lot of semantics. To analyze the text and to find these semantic frames,

the SemMap processor tries to find frames. This part of the system will be described

in section 4.6. Beside the semantic frames a text can also contain numbers and digits

that have semantic meaning. These parts are extracted wit the mechanism described in

section 4.7. After all of these mechanisms, the document needs fast index structures to

easily request a large document. More detail on these structures is provided in section

4.8. To put this annotation step in the context to the whole system consult figure A.7

for more information.

48

4. Text Annotation

4.1. Document Preprocessor

The processing of an unstructured document needs a reliable preprocessing. The docu-

ment must be divided into sentences or syntactical elements that can be used for further

operations on the text. At this a lot of problems can occure, for instance if the document

is not well-formed or consists just of word groups without a grammatical separator. The

separation of sentences will be covered by a module called ChiaqueryParser. After the

parser divided the document into sentences the handling of inconsistencies can be done

using the DocumentPreprocessor.

The preprocessor covers the following tasks:

• Normalize umlauts like ä, ö and ü

• Replace brackets, symbols and other unusable tokens

• Classify input into REQUEST, STATEMENT or QUESTION

• Create a stemmed version of the input using Lucene GermanStemmer

• Create a processed sentences that is normalized and consists of lowercase letters

Input Konrad Zuse ist der Erfinder des Computers.
Output konrad zus ist der erfi des compu.

Figure 4.1.: An input sentence after DocumentPreprocessor

Figure 4.1 shows an input sentence before and after the run through the preprocessor.

The focus of the illustration is on the stemming which is very important to find indexed

or similar words during the search process later.

4.2. Part-of-Speech Tagger

Part-of-Speech is a very important part of a Natural Language Processing pipeline. It

represents the grammatical view on the data and likewise the first step to understand the

text semantically. The output of such a tagger is a set of tags, each tag for each word.

The tags provide the information of the word type, for instance verb, noun, adjective and

a few more. The set of tags is illustrated in figure A.9. The grammatical representation

of the input is provided by the Stanford NLP Core POS-Tagger (explained in section

2.3.3). The tagger annotates the incoming sentences of the documents and add the

49

4. Text Annotation

tags to the sentence structure as well as to the word representation itself. The tagger’s

output can be seen in figure 4.2. The tagger implementation used for this system has

Input Konrad Zuse ist der Erfinder des Computers.
Output NE NE VAFIN ART NN ART NN

Figure 4.2.: An input sentence and its corresponding POS tags according to the tag set
illustrated in figure A.9

problems if a sentence is not well-formed. Therefore the document needs an accurate

pre-processing procedure so that the tagger can work properly.

4.3. Named Entity Recognition

Finding named entities in the text is also covered by the Stanford NLP Core NE-

Recognizer which was already introduced in section 2.3.3. NE recognition tries to find

locations, persons, organizations and other entities in the text. This is important to find

answers that relate to such a type of entity. If the question asks for a person it is very

likely that the answer was found during the annotation process and marked as person.

The same procedure also works for other types of entities. The POS tagger tries also

to find Named Entities but it doesn’t segment into various types of entities. Figure 4.3

Input Konrad Zuse wurde in Berlin geboren.
Output I-PER I-PER O O I-LOC O

Figure 4.3.: An input sentence and its corresponding NE tags according to the set of
possible NE tags illustrated in figure 2.4

provides an example of a tagged input sentences. The person was correctly identified

as a person. Berlin as city and capital of germany was also correctly identified as a

location.

4.4. Text Normalization

One of the important procedures for a successful question answering system is the nor-

malization of the text. Verbs, nouns, numbers and a few more parts of the text can be

expressed in several ways. The system needs a normalization module that creates an

uniform representation of the text to make it comparable. This section deals with the

normalization methods used for this system.

50

4. Text Annotation

4.4.1. Verb Normalizer

Verbs in sentences or questions can appear in different modes. Firstly, they can occur

with a tense and secondly, the formulation of the verb. The conjugation is subject

to future work. To cover the first aspect the verb normalizer was developed. This

normalizer loads a database (at system startup) that consists of verbs with their three

tenses:

• PRESENT

• PAST

• FUTURE

If the normalizer finds the verb in the database, it can set the tense of the question and

also set the present tense of the verb. This information is very important. If the answer

type detector (described in section 5.5) detects that the question is asking for a date,

this information helps to specify the statement to: The question is asking for a date in

the past. This normalizer uses the database that was introduced in section 3.3.3. The

Input Konrad Zuse wurde in Berlin geboren.
Output O O ist/PAST O O gebären/PAST

Figure 4.4.: An input sentence and its corresponding verb normalizer output

second point regarding the formulation of the verb will explained in section 4.5. If a

verb can’t be found in the database maybe a synonym of the verb can be found with

the another mechanism and then the correct tense can be determined.

4.4.2. Symbol Normalizer

Some text documents or texts using symbols or special characters to point out a certain

circumstance. These symbols are readable but difficult to understand for a computer

system. The main problem of using symbols it that they often hide semantic relations.

Consider the symbol $ or the symbol @. The first means dollar but the semantic relation

is that it also means a semantic relation, namely the number before the symbol in the

currency named ’dollar’. The second symbol could point out, that it consists in a mail

address but it could also be part of a statement ’AC/DC @ Dresden’ which means that

the band AC/DC is playing a concert at/in Dresden. To tackle this problem of symbols,

the symbol normalizer was established. The normalizer covers all simple symbols and

51

4. Text Annotation

Input Die Rechenmaschine kostete 1000$.
Output O O O Dollar

Figure 4.5.: An input sentence and its corresponding symbol normalizer output

can be extended easily. All symbols that were found and normalized are added to the

alternativeForms of the word in the sentence. A simple example is illustrated in figure

4.5.

4.4.3. Acronym Normalizer

A problem similar to symbols is the use of acronyms. Acronyms cover a lot of semantics

that a computer system need to understand when it tries to compare a text against

another text. Two often used significant examples are ’zB’ for ’zum Beispiel’ or the

’FC’ for ’Fussballclub’. The second example shows the obvious semantic enrichment

of the acronym resolution. If a computer looks at ’FC’ it can not catch the semantics

behind it. But if it looks at ’Fussballverein’ it can find a lot of synonyms like ’Ballsport’,

’Organisation’ and ’Verein’ which are all very pivotal to find the right answer. Of course,

the ability to find such synonyms is related to the used semantic network. In this work

SynMap and SemMap are used to cover this task. The most challenging problem of this

normalizer is the resolution of ambiguous acronyms. The example in figure 4.6 shows

this ambiguity problem. In this case the normalizer adds all found long versions of the

acronym to the dataset. In most cases the ambiguities are solvable. If the question

Input Für NLP wird die Methode oft benutzt.

Output O Neurolinguistische Programmierung O O O O O
Natural Language Processing

Figure 4.6.: An input sentence and its corresponding acronym normalizer output

consists of more information than just the acronym (some topic related information)

the coarse search with all possible long versions will automatically find more relevant

documents.

The acronym database, explained in section 3.3.5, can be easily extended. The database

exists in plain text format and the insertion format is explained in the documentation.

All found and normalized acronyms are added to the alternativeForms structure of the

processed word and used during the process of query creation.

52

4. Text Annotation

Wer war Marilyn Monroe und wann komponierte sie ihre tollen Lieder?

"m_genders": {

"Marilyn Monroe": "FEMALE"

},

Figure 4.7.: Procedure of pronoun normalizer with an example

4.4.4. Pronoun Normalizer

Often, one question asks for more than one fact or the question asks for two semantically

different things. Motivated by the laziness of the user, the use of pronoun is very common

for this type of questions. A pronoun sets the reference to a named entity or noun that

was written before. The interesting thing of this behavior called ’laziness’ is that the

user reveals and information that hidden from the system else.

Any given pronoun contains the gender of the named entity that were used previously in

the same question. The system has to put together a pronoun (for example: ’er’) with

the named entity used in this question (for example: ’Konrad Zuse’). The previously

found named entity will be replaced with the pronoun and the gender will be added to

the genders structure of the sentence. Figure 4.7 introduces the output of the normalizer

using an example question.

4.4.5. Number Normalizer

A large number of the questions asked to a Question Answering system are asking for

numbers. The problem is that these numbers often not consist in a form that the system

can process them. A number or digit as alphabetic value is the best example. If the digit

hides behind ’zwei’ or ’neunzehnhundertachtunddreißig’ the system needs a mechanism

that transfers these strings into processable digits. This was the motivation to develop

a number normalizer.

Input Die Rechenmaschine kostete tausend Dollar.
Output O O O 1000 O

Figure 4.8.: An input sentence and its corresponding symbol normalizer output

The normalizer works as a left to right look ahead parser that tries to find symbols

(for instance ’zwei’, ’drei’, etc.), fill words (e.g. ’und’) and factors for multiplication (e.g.

53

4. Text Annotation

’tausend’, ’hundert’, etc.). A short example of the output is provided in figure 4.8.

4.5. SynMap Processor

Synonyms are very important for the search of verbs, nouns and adjectives. All of these

words have words with a similar meaning that in most cases are more likely to occur in

the target text. These synonyms are used during coarse document search (section 6.2),

web search (section 6.3) and for the creation of the query plans (section 6.1.2). This

is done by going though each word and trying to find a possible synonym for it. The

Input Der Computer arbeitet mit Software.
Output O Rechner O O Programm-Code

O Rechenanlage O O Softwareprogramm

Figure 4.9.: An input sentence and its corresponding SynMap output

database that is used was introduced in section 3.3.2. An example can be seen in figure

4.9. Here synonyms were found for two words in the sentence. All the found synonyms

are stored in the the annotated document to speed up the execution time and prevent

the system from searching for synonyms again.

4.6. SemMap Processor

The SemMap Processor solves the task of semantic annotation. The database of SemMap

was described in section 3.3.1. The processor goes through the text and looks up the

semantic frame of each word. This can be very helpful because semantic similarities often

point out facts that are likely to reach a specific topic. Semantic annotation is a crucial

part of understanding a text and especially a sentence or question. During the question

answering process the semantic frames are a criteria of comparison and help to find the

right answer candidates. The found semantic frames are added to the frames structures

of the word itself and on sentence level. Figure 4.10 illustrates the found semantic frames

in two example sentences. A possible next step could be to combine semantic frames

and find similarities between semantic frames to find correlations between sentences and

questions.

54

4. Text Annotation

Input Der Computer heißt Z3 und Zuse war von ihm überzeugt.

Output O O Being named O O O O O O Certainty

Input Er bemühte sich, beanspruchte Patente & schätzte die Chancen hoch ein.
Output O Attempt O Claim ownership O O Likelihood O O Assessing O

O Using O O O O Judgement O O Judgement O
O Self motion O O O O O O O Rewards O
O Statement O O O O O O O Awareness O

Figure 4.10.: Input sentences and their corresponding SemMap output

4.7. Semantic Extractors

Beside named entities (for instance locations, persons and organizations) which are also

semantic extractions there are a plenty of more possible extractions in a text. This

section deals with numeric extractions and how they are treated from the system to find

answers.

All explained extractors refer to a class of the numeric class of the answer type tax-

onomy that the system uses. This taxonomy was already explained in 2.1.1 and the

full taxonomy is illustrated in A.8. The idea to convey the taxonomy of the numeric

class straight to the extraction types is very feasible. When the answer type detector

estimates a member of the numeric class (a subclass) to be the most likely answer type,

the system can first try to apply an extracted numeric value (including its unit) from

the most relevant document and the most relevant sentence. This minimizes the com-

putational effort of the answer finding process because extracted text can be indexed

and the mapping from answer type to extractor happened in a straight forward manner.

Certainly, not all variations of semantic formulations can be covered. Some formulations

are uncommon and therefore not considered during the conception of an extractor. For

instance a new unit for representing a currency value. If the system does not know this

currency (and its symbols that represent a currency value) the system can’t detect this

value and label it as a member to the money class. Subsequently all current semantic

extractors are introduced in short:

Count Extracts the amount of something using keywords like ’Anzahl’, ’Stück’ and a

few more.

Date Date formats are extracted. Supported formats are using dots and hyphen.

Distance Routes between way points are extracted here. Common units are used for

this task like ’km’, ’m’ and others.

55

4. Text Annotation

Money Currencies are extracted by the money extractor using known symbols and

labels.

Order Rankings and hierarchies are extracted here. Keywords are ’Platz’, ’Platzierung’

and many more.

Percent Percentage values also extracted. This extractor finds shares, rates, dues and

percents.

Period Time during two events is extracted with the period extractor. The extractor

expects a time.

Temperature Values that expose temperature values are extracted with the most com-

mon units.

Time The corresponding mapping is equal to the date extractor. The extractor is

specialized on time statements.

Volume & Size The extractor is specialized in finding area sizes and capacity of bodies.

Weight Statements that cover weight values and severity are found by this extractor

together with the most common units.

4.8. Index Structures for Annotated Documents

All the mechanisms that were previously described in this chapter are important to

explore the data and to enhance the possibility to find an answer. Part-of-speech tagging

improves the possibility to find the right target, NE recognition enhances the possibility

to find persons and many more. But more data requires more computational power.

Therefore smart index structures must be found to ensure the performance during answer

finding. Therefore, every document owns index structures covering all necessary data

that was created during document preprocessing.

All types of structures are explained in this section.

• Locations, not stemmed

• Organizations, not stemmed

• Persons, not stemmed

56

4. Text Annotation

• Entities, not stemmed

• Entities, stemmed

• Verbs, stemmed

• Adjectives, stemmed

• Nouns, stemmed

• Semantic frames

All the parts that are mentioned above exist in the head of the document with an index.

The structure of the index contains of the stemmed or not stemmed word that is realized

as a hash and points to a list of sentence numbers. The sentence numbers out indicate

the hash key exists in the corresponding sentences of the document.

′berlin′ −→ {0, 4, 7, 11} (4.1)

As equation 4.1 illustrates that entity ’Berlin’ occurs in four sentences with the sentence

IDs 0, 4, 7, 11. This index structure has a huge advantage for finding relevant sentence.

The algorithm that finds relevant sentences can operate on a lot of sets and can find

intersections of sets that include the same sentence ID. With this behavior, finding

relevant sentence in a large document is fast and more scaleable then seeking through

the whole text.

The introduced indexes can be found on top of the document and they are also covering

the whole document. Other index structures are settled on sentence level and help to

easily find possible targets (which are often named entities or part-of-speech tags). These

indexes are:

• Semantic frames that the sentence contains

• Part-of-Speech tags as an array to rapidly find possible targets

• Named entities as array to also find possible targets promptly

• Words as an array to extract corresponding candidates

• Containing nouns as array

• Containing adjectives as array

57

4. Text Annotation

• Containing verbs as array

The sequence of using all of these indexes during the answer finding process can be

considered as follows:

1. Find relevant sentences using the indexes on the document level

2. Using intersections of the indexes to rate relevant sentences

3. Find targets in relevant sentences using the indexes on sentences level

4. Extract answer candidates using indexes on sentence level

These indexes are used and explained in more detail in the following chapters. It is

important to understand that these indexes are part of every annotated document,

so that each document can be processed independently. Other indexing concepts try

to centralize specific index structures to access them very quickly (and also to avoid

overhead). For this work no centralized concept was chosen, because every document

should stand alone. An annotated document should be parse from another system, if

needed and therefore provide all needed data. This approach uses more disk space but

at the moment of processing just one file needs to be opened up, whereas the centralized

approach opens a few index files and looks up the indexes in these files.

58

5. Input Processing

This chapter explains the pipeline from an input question to a query that the proposed

system is able to use for the answer finding process. Parts of this pipeline were already

described in chapter 4. In this chapter this pipeline will be explained for especially ques-

tions. To see the context of the input processing part consult figure A.7 which provides

an overview of the pipeline. This first step of the pipeline is the preprocessing of the

question. An incoming question needs to be normalized and stemmed to be comparable

with the documents indexed in chapter 5. This preprocessor will be explained in section

5.1. After the preprocessing two important models come into account. These models

first estimate the grammar of the question and try find possible named entities (like

persons, organizations and locations) in the question. This is important to disassemble

the question into nouns, verbs and adjectives as well as to lookup found entities. These

two parts are described in sections 5.2 and 5.3. After that the next annotation step

is more complex. It contains the search for synonyms and semantics in the question.

Synonyms are later used to enhance the question and reformulate it. Semantics are

important to understand the question in a deeper way. Therefore semantic frames are

extracted. This annotation step is described in more detail in section 5.4. Afterwards,

the answer type needs to be estimated. The answer type describes the required type

(this could be a location, a weight or a company) of the question and is important to

find the correct answer in the documents. The answer type detector will be explained

in section 5.5. Another important part is the classifaction of the correct representation

type. The question could require a fact, a list of facts or a paragraph (description). This

needs to be estimated before the system starts to query the knowledge base. Answer

representation will be described in more detail in section 5.6.

5.1. Question Preprocessor

The preprocessing module takes care of the questions equals the DocumentPreprocessor

that was introduced in section 4.1. Questions are a specialized form of a sentence and

59

5. Input Processing

Input Wo wurde die Z4 übergeben?
Stemmed wo wurd die z4 ubergeb
Processed wo wurde die z4 uebergeben

Figure 5.1.: Question after preprocessing step

therefore questions need a special treatment to be preprocessed correctly. Beside other

things, the preprocessor mainly takes care of:

• Normalize umlauts (ä, ö and ü)

• Replace brackets, symbols and other unusable tokens

• Create a stemmed version of the input using Lucene GermanStemmer

• Create a processed question that is normalized and consists of lowercase letters

After the application of this module, the question can be seen as normalized.

As figure 5.1 shows the question was stemmed and the umlauts are removed or replaced

with corresponding substitutes.

5.2. POS Tagger

With the POS (Part-of-Speech) tagger the question is analyzed and the most likely tags

are estimated. The model used for this task comes from Stanford NLP Core (motivated

in section 2.3.3).This step is important to get to know the grammatical structure of

the question. Question structures are often similar. Most factoid questions ask for

an action (verb) in connection with a subject and an object (nouns or entities). The

part that describes the action executed on a subject is represented by the adjectives.

Other characteristics of a question are the succession of appearance of POS tags and

the occurrence of a specific tag in general. In figure 5.2 two examples are presented.

Input Wo wurde die Z4 übergeben?
Output PWAV VAFIN ART NN VVINF

Input Welche Fahrzeuge wurden in Zuffenhausen hergestellt?
Output PWAT NN VAFIN APPR NE VVPP

Figure 5.2.: Questions after POS tagging using the tag set depicted in figure A.9

The structure of tags is hierarchical. If a tag begins with a ’V’ it expresses a verb

60

5. Input Processing

’VINF’ means full and infinite. To know this is very important for the handling of

these tags. Because the used tagger operates on a statistical model. In some cases the

tagger fails to estimate the type of the verb. To provide a short example: The verb

’V’ was correctly estimated, but the type ’AFIN’ (auxiliary, finite) was not correctly

estimated and instead the system estimated ’VPP’ (full, participle perfect). To ensure

fault tolerance, the system presented here, works, in most cases, just with the simple

estimation of the POS type (’V’ for verb, ’N’ for nouns and named entities and ’A’ for

adjectives) and other tags that have not such a deep structure (for instance ’CARD’ for

cardinal number or digit in general). The single exception is the answer type detector,

where the statistical feature extractor works with the detailed form of the tags. In that

case, a wrong estimation is not a big deal, because the feature extractor learns on a huge

data set and appears to be robust against single incorrect estimations. The full tag set

is presented in figure A.9.

5.3. Named Entity Recognition

Finding named entities can be crucial for the processing of a question. Therefore NE-

recognition is applied to the incoming question using the Named Entity Recognizer of

the Stanford NLP Core (introduced in section 2.3.3). Basically an entity, in nearly all

cases, is a noun. If the system detects a named entity, then this piece of information

can be set on top of the basic information that this word (or term) is a noun. The

Input Wer war Konrad Zuse?
Output O O I-PER I-PER

Input Welche Fahrzeuge stellte die Porsche AG in Zuffenhausen her?
Output O O O O I-ORG I-ORG O I-LOC O

Figure 5.3.: Questions after NE recognition using the tags depicted in figure 2.4

second example in figure 5.3 points out how important it is to understand the semantic

meaning of a noun. If this question is considered with just the POS tags (explained in

section 5.2) it is hard to find out, what the question wants to know. With using the

NE representation it becomes much clearer. The relation between ’Porsche AG’ as an

organization and ’Zuffenhausen’ as a location appears.

The system proposed in this thesis takes advantage of the found named entities during

query generation and scoring of the answer candidates. Furthermore the appearance of

61

5. Input Processing

a named entity is also part of the statistical feature detector, which will be explained in

upcoming sections of this chapter.

5.4. Text Annotation for Questions

The annotation of text was already described in chapter 4. In this section the text

annotation optimized for question will be explained. The mechanisms are quite similar

to the text annotations used for documents. To have comparable structures this is very

important. This section will explain all normalizers, analyzers, processors and extractors

with question examples.

5.4.1. Question Normalization

Normalized text reduces complexity and helps to simplify the rule set that processes it.

To achieve this normalization the question runs through a bunch of normalizers that

transforms the incoming text. Below all of the systems normalizers are listed with a

short description of their behaviors.

Verb Normalizer Verbs often occur not in the present tense and in a conjugated form.

To normalize these verbs and to enhance the information of the verb to verb plus

tense of verb this normalizer was built. The application of this normalizer is

important to search in text data that have also normalized verbs. At times, the

given question formulates a verb in the past and in contrast the given information

base contains this verb in the present tense. After normalizing the position with

the verb in present tense can also be found.

Acronym Normalizer Acronyms are shortened terms that, in most cases, include a

lot of information. The task to extend the acronym to the correct term is very

important to get more information about the question. It is important to know

that one acronym can have different meanings. At the current point, the proposed

system isn’t able to distinguish correctly between the right and the wrong meaning.

Anyhow the extension to explore a long version of an acronym in queries and search

process is important.

Symbol Normalizer Like acronyms, symbols display the same problem for information

retrieval. They are shorter than their long forms and therefore they are generally

accepted for expression in the text. A symbol always has an implicit semantic -

62

5. Input Processing

for instance ’$’ expresses a currency (which again is the semantic relation of the

number that appeared before the dollar sign). To uncover this semantic the nor-

malizer replaces the sign with the right expression and adds terms to the alternative

formulations of this token.

Pronoun Normalizer In some cases the question is more complex. In these cases the

author of the question uses a pronoun (’er’, ’sie’, ’es’, ’ihre’ and more) to make

a reference to a previously introduced entity (person or thing). This allows two

conclusions. The first conclusion is that the current position of the text (the

pronoun) can be replaced with the entity. The second is that it allows an inference

of the gender. These two conclusions are added to the question after processing

this normalizer.

Number Normalizer Numbers are an important part of a question. Often, year dates

or a quantity of something is declared. The author of the question can use the

numeric expression of the number or digit (e.g. ’13’) and the author can also

choose the textual expression (e.g. ’dreizehn’). The numeric expression is not the

problem here. This normalizer is specialized to find the numeric value to a given

textual expression.

Input Was passierte neunzehnhundertdreiundachtzig in der DDR ?
Number Norm O O 1983 O O O
Acronym Norm O O O O O Deutsche

Demokratische
Republik

Input Wer war Konrad Zuse & wann starb er?
Pronoun Norm O O O O O O O Konrad Zuse
Verb Norm O sein/PAST O O O O sterben/PAST O

Input Welches System kostet 1000$?
Symbol Norm O O O Dollar

Figure 5.4.: Questions after text normalization

Figure 5.4 shows three examples with their text normalization output. For each ques-

tion all normalizers are applied. The figure just shows the relevant applications. After

this normalizations further processing steps can be applied.

63

5. Input Processing

5.4.2. SemMap Processor

As aforementioned semantics are very important to understand the meaning and reason

of a question. The SemMap processor applies its database to each word from the left

to right. If a word was found in the database the corresponding frame is added to this

word. A semantic frame can be understood as an unit of meaning that share different

words together. Therefore semantic frames are an important feature to find similar units

of meaning in the question as well as in the data source.

The semantic frame can help to answer the question, why the question was asked. Maybe

the author of the question has the intention to buy a product or the author has other

intention with the organization that he or she has mentioned in the question.

Input Wie heißt der Computer von Zuse?

Output O Being named O O O O

Figure 5.5.: Questions after SemMap processing

The current data set with frames has not reached a size of a productive deployment.

Section 3.3.1 illustrates the size of the database and the prospects for the future. Figure

5.5 shows the problem. For a simple question just one semantic frame was found. At

the first view this seems poor, but for this simple question and for question processing,

in most cases, one frame suffices for a match.

5.4.3. SynMap Processor

Synonyms are important to extend a question and to re-formulate it when the results

for the initial question are bad. This part is provided by the SynMap database that was

formerly introduced in section 3.3.2. Ordinary, the author of a question is not the author

of the documents in the knowledge base. Different people use different formulations and

this is one aspect that makes the task of understanding the question and matching answer

candidates so hard. To tackle this problem, each word in the question is looked up in the

database and if a synonym was found then it will be added to the word and considered

during the processes of query generation and finding answer candidates. The example

Input Welcher Computer arbeitet mit Software?
Output O Rechner O O Programm-Code

O Rechenanlage O O Softwareprogramm

Figure 5.6.: Questions after SynMap processing

64

5. Input Processing

in figure 5.6 shows synonyms for the two nouns in the incoming question. Beside nouns,

the database also covers verbs and adjectives. With an improvement of the SynMap

database could come more possibilities for paraphrases of the original question which

leads to a larger set of results and information redundancies which are necessary to find

the right answer.

5.4.4. Semantic Extractors

Extractors are used to find numerical values and their semantics in questions. If the

question contains ’1000 kg’ then the semantic behind this term is the number ’1000’ as a

weight value with the corresponding unit ’kg’ which stands for kilograms. The problem

that the semantic extraction tries to solve, is also tackled (for a few cases) with the

acronym and symbol normalizer. These normalizers replace the unit in the text, but

the extractors are doing one more step. They extract value and unit into a computable

structure. To find such semantic-related numbers in the questions extractors exist that

find the following things in the question: counts, dates, distances, money/currencies,

orders, percentages, periods, temperatures, times, volumes, sizes and weights. They

were formerly explained in section 4.7. The current system extracts these values but the

bigger usage of them is, no doubt, on the side of document annotation.

For the sake of completeness the extractors are mentioned here but the current system

just tries to find semantic extractions in the knowledge base to register them as answer

candidates if the question are asking for such a type (weight, currency and others).

5.5. Answer Type Detection

The detection of the correct answer type is probably the most important action during

a Question Answering process. If the system estimates the wrong answer type, the

behavior of the system changes and the likelihood to find the correct answer decreases

rapidly. This section describes the process of answer type detection and introduces the

model that was used to build the classifier.

The taxonomy used for the classifier was established by Li and Roth in 2002 [26] and

later extended in 2006 also by Li and Roth [27]. This taxonomy is illustrated in figure

A.8. Because of the high quantity of classes the classifier is realized in a hierarchical

manner. The first layer estimates the top-classes and the second layer estimates the

sub-classes also named detailed answer type. For the top-classes just one model needs

65

5. Input Processing

to be trained, but each top-class also has a model for their sub-classes.

The anatomy of the classifier is illustrated in figure 5.7. All components are described

Figure 5.7.: The conceptual view of the answer type detector. The statistical feature
extractor delivers the feature vectors for the multilayer perceptron which
learns the coherencies of the features.

below:

Statistical Feature Extractor The feature extractor works on three levels of perception

and uses the Naive Bayes for its decisions. It is important to know that the feature

extractor must be previously trained using a labeled data set. The first perception

level is called word level. N-gram models are trained that use the consecutive words

as data. The second level takes care of the grammatical part of the question. The

n-gram models use the consecutive POS tags as feature. The third level works with

a combination of SynMap words, SemMap frames, tense of question and occurring

named entity types as features to calculate the conditional probability for each

class. The extractor creates a feature vector where each value of the vector is a

number between 0 and 1 and reveals a specific confidence. Each class to estimate

has a data dimension in each perception level. The detector needs data for training.

Artificial Neural Network For this task a Multilayer Perceptron with one hidden layer

was used. The feature vector serves as input for the neural network that was

66

5. Input Processing

previously learned using another data set than the feature extractor. This is very

important to prevent the neural network from over-fitting. The network learns

the mapping from the input vector to the classes. Since the features from all

perception levels are put together in the net, the dependencies between each of the

perception levels is learned by the neural network.

Confidence results After processing the neural network the model returns confidence

values for each class. These values can be seen as a likelihood that a specific data

point belongs to a specific class. These confidence values are later the foundation

of decision and control the behavior of the system during the QA process.

For the extractor a model, container and trainer was developed that implement the

Naive Bayes and were optimized to build and estimate n-gram models. Furthermore the

neural net was trained with the Weka framework (introduced in section 2.3.2).

Classify Answer Type

The coarse estimation of the answer type needs the following top-classes:

• ABBREVIATION

• DESCRIPTION

• ENTITY

• HUMAN

• LOCATION

• NUMERIC

The classification result is shown in equation 5.1. For each class the result set contains

a confidence value c.

C = {cabb, cdes, cent, chum, cloc, cnum} (5.1)

These confidence values are decision-making for further classification. The system just

uses the two highest valued classes and activates the sub-class models of these classes.

The reason behind that is the computational cost. Selecting the two most likely classes

is motivated by the fact that a narrow decision between two top-classes can be corrected

because the sub-class confidence comes into account.

67

5. Input Processing

Classify Detailed Answer Type

Classifying the answer type, as explained in section 5.5, is the basis for this section. The

system uses the two classes with the highest confidence and starts the detailed classifiers

for each class. Each model has another previously trained statistical feature detector

that is a specialist for a class. The advantage of doing so is that no dispensable features

are used and that the classifier hasn’t seen unnecessary (and confusing) data.

Chum = {cdgroup, cdindividual, cdtitle, cddescription} (5.2)

For example the HUMAN class, equation 5.2 points out the neural network returns a set

of confidences cd. The confidence predicates the probability that this example belongs

to a specific class.

Combined Answer Type Confidence

After the coarse classification and the detailed classification was done the confidences

need to be compared and ranked to find out which is the most likely answer type.

CC = TC · SC (5.3)

The combined answer type confidence CC is calculated with a multiplication between

the confidence of the top-class TC and its sub-class SC. The three classes with the

highest combined confidences are set as final answer types. The estimation of these

types is very crucial, because the estimated classes determine the choice of the query

plans for the QA process.

5.6. Answer Representation Detection

The detection of the answer representation is another important step for the success

of the QA process. All parts of the system can act correctly and possibly find a valid

answer but the if the Answer Representation detector decides to display a PARAGRAPH

instead of a LIST the valid answer will be transformed to a paragraph and the system

fails to deliver the demanded list. The model decides between the following three classes:

• FACT

• LIST

68

5. Input Processing

• PARAGRAPH

The classifier is based on a neural network (Multilayer Perceptron) that was implemented

with the Weka framework. The features for this task are engineered by hand. Some

features that are most significant for this task are listed below:

• Prefixes and suffixes of nouns, verbs and adjectives

• The occurring W-word (or question word)

• Occurrence of umlauts

• Use of special Part-of-Speech combinations

• Use of named entities in the question

The list above is not complete. Just the most significant features are listed. At the

moment the dimension of the vector that represents the features (called feature vector)

has 100 dimensions. This means that all features that separate those three classes are

coded in a vector with 100 dimensions. The output of the classifier are the confidence

values for each class.

Crepresentation = {cfact, clist, cparagraph} (5.4)

These confidence values, indicated in equation 5.4, are ranked and the class with the

highest confidence value (which equals to the highest likelihood) is picked and used for

the answer representation. Experiments on this classifier are shown in section 8.2.2.

69

6. Query Processing

After explaining the annotation of documents and incoming questions this chapter deals

with the steps that produce a query out of a processed question (for the context see

figure A.7). Therefore a question needs alternative formulations and a plan to solve the

question. The generation of this plan and how the plan is scored are the focus of this

chapter. First the generation of queries, that are used to query the coarse document

search using Lucene, will be described in section 6.1. These queries are used for the

coarse search. This coarse search and the scoring are part of section 6.2. During Lucene

will be used to query the local knowledge base, a search engine will be used to query

against the knowledge in the internet. This mechanism of the system is described in

section 6.3. After relevant documents were found (via Lucene or web search) the query

processor comes into account. This processor uses the found documents to find the

possible answer candidates in it. The processor is described in 6.4.

6.1. Query Generation

The Query Generation module consists of two main parts. The first one is the generation

of queries that are used for Apache Lucene Searcher (section 6.1.1). These queries are

generated from the question. The second part is the generation of query plans (section

6.1.2). These two procedures are explained in detail in the following sections.

6.1.1. Lucene Query Generation

Lucene queries are necessary to feed the Lucene searcher that comes into account in

coarse document search which will be described in detail in section 6.2. In this system

Lucene is used to retrieve all documents that are necessary and that are likely to contain

the correct answer.

These queries are very important because the selection of words to formulate a query

string are crucial to the success of the Lucene query. Therefore the generation algorithm

70

6. Query Processing

set(complete question)

set(all nouns)

for all nouns and their synonyms as n

set(n)

for all verbs and their synonyms as v

set(n v)

for all adjectives and their synonyms as a

set(n v a)

for all expansions and their synonyms as e

set(n v e)

Figure 6.1.: Algorithm A to create Lucene queries

set(original question)

words = [][]

for each word and its expansions as s[] at index i

words[i] = s

setAllCombinations(words)

Figure 6.2.: Algorithm B to create Lucene queries

needs to be accurate to ensure the best results. The algorithm shown in figure 6.1

produces queries as noun-verb-adjective and noun-verb-expansion combinations with the

goal to pick up the important parts of the questions, to make it short with containing

just three parts. In contrast the algorithm presented in 6.2 returns the original question

and all expansions of each word which leads to the combinations of all possible and

found words in a question. The term ’expansion’ means all found syonyms of the word

that were found earlier during question normalizing and SynMap processing. The part

of this pipeline was already explained in a previous section 5.4.

The 2 proposed algorithms are both delivering results and are also both implemented

in the system. In the chapter that deals with experiments on the system, these both

algorithms are tested and evaluated, see section 8.2.3.

6.1.2. Query Plan Creation

A query plan is very important for the system. This plan contains a lot of parts to find

the correct answer. All of these parts as well as the priorities that a plan has during

lifetime are explained in this section. Which query plans are activated is decided after the

71

6. Query Processing

detection of the detailed answer type. Each of the answer types have specific query plans

because each answer type refers to another semantic role or type of word. Furthermore,

each answer type has certain targets to look for. For instance, if the question asks for a

color it is very likely that the target refers to an adjective. To make sure that all these

things are covered during the querying process, the plans were categorized by answer

type.

Anatomy of the Query Plan

The plan consists of a few structures that have various intentions during the process of

finding answer candidates. These structures are implemented as lists or arrays to quickly

walk through them during execution time. The structures are described below:

id Identification number to trace back the plan. This is used to assign answer candidates

to corresponding plans for scoring or just for debugging afterwards.

answerRepresentation Contains the desired Answer Representation of the system.

actions Verbs of the question and not part of the answer. This structure is implemented

as an array.

focuses Nouns and entities of the question and not part of the answer. Focuses are

implemented as an array.

target POS or NE tag of the target in the text. The system first need to match this

criterion.

hints System-given words that are likely to appear in a candidate sentence, but not part

of the answer. Implemented as array.

parts Tokens that are likely to be used in the answer string and can be part of the

answer. Implemented as an array.

majorPriority This is defined by the first, second or third answer type. It contains an

integer value.

minorPriority Defines the quality of the target within the major priority. This is im-

plemented as integer value.

answerTypeConfidence Confidence of the primary detected answer type. This was

already explained in section 5.5.

72

6. Query Processing

score Calculation of the score, is explained, in detail, in section 6.1.2.

story In some cases and if the query plan intends a paragraph as answer type, a story

can be set to control the behavior of paragraph generation, see section 8.2.3.

Multiple plans exist for every answer type. The idea behind this is that a location can be

detected by POS Tagger and the Named Entity Recognizer (both described in sections

5.2 and 5.3) even as ’I-LOC’ which is a valid tag for a location. But the both taggers

can fail and classify the location not as ’I-LOC’ but rather as ’NE’ or ’NN’ which are the

tags for a ’Named Entity’ and a ’ Normal Noun’. To also cover these cases more than

one query plan with a corresponding minorPriority was developed. The priority points

out how important the target is according to the accuracy of the tag. For example a

’I-LOC’ tag is higher prioritized than a ’NE’ when the query plan searches for a location.

Priority & Scoring of Query Plans

As already mentioned in this section, the query plan consists of two levels of priorities.

For the scoring, the two priority levels and the formerly explained parts of the query

plan are important. The first scoring measure is named QPCS (Query Plan Component

Score). For this each part of the plan needs a weight w, that reveals how important this

part is. The occurrences of a specific part is also needed and denoted with o. The

QPCS can be seen as a linear combination of all attributes and their occurrences o and

weights w with one exception which is the target. To the scoring value of the target,

the minor priority MIP is multiplied to increase the score for more likely targetsand

to decrease less likely targets. After calculating the QPCS the overall query score can

be calculated using the CC (answer type confidence, explained in equation 5.3) and the

major priority MAJ of the query plan.

QPS = MAJ · CC ·QPCS (6.1)

This final score calculation of the query plan is shown in equation 6.1.

6.2. Coarse Document Search

After the generation of the Lucene queries (with the algorithms explained in section

6.1.1) follows the search via Lucene searcher. This section explains how the queries are

used to retrieve relevant documents to work with and extract facts as well as sentences

73

6. Query Processing

for a paragraph. Section 6.2.1 explains the workflow of applying queries to the searcher

and section 6.2.2 describes the scoring of the queries and how the Lucene scoring fits in

the scoring of the whole system.

6.2.1. Queries

The Lucene searcher takes queries to run these against the set of all indexed documents.

This will be done with all the queries that were generated with the procedure explained

in section 6.1.1.

The Lucene classes for this task named IndexSearcher, GermanAnalyzer and Query-

Parser. All documents were previously indexed from the ChiaqueryKnowledge module

and exist in the index of the system. How this part of the system is structured was

already explained in section 3.1.3.

6.2.2. Scoring

Lucene uses a few measures to determine the score of a document. The Lucene scoring

determines the match between a query and a document. The core of the scoring function

is the VSM (Vector Space Model) where every query and document can be presented in

a high dimensional space with weighted vectors where each dimension is a specific term

of the index space - and weighted by TF-IDF. The similarity between a document d and

a query q is computed by the cosine similarity which is illustrated in equation 6.2.

cossim(q, d) =
V (q) · V (d)

|V (q)||V (d)|
(6.2)

For that the function V represents the vector for the text. Furthermore V (q) · V (d)

and |V (q)||V (d)| are presenting the dot product and euclidean norm of the vectors.

The complete calculation is far more complex. Beside the cosine similarity there are a

few more components that are important for Lucene overall scoring function:

coord In some cases, a query is suited by a set of sub-queries. Each sub-query is applied

to the Lucene searcher. To balance the different result sets and documents that

may occur in more than one sub-query, the coordination factor exists.

boost At the time of applying the query to the Lucene searcher, each part of the query

or sub-query can be boosted and has more weight during search. If a document

fulfills the constraints for higher rated sub queries more than others, the document

will be boosted with the given factor.

74

6. Query Processing

doclen The document length normalization factor scales the document by its length.

Some documents are larger than others. To normalize the cosine similarity output

the doclen factor is applied.

docboost At the time of indexing each document can be defined with a boost factor

because it is more important than other documents. This factor is applied to boost

the document score.

score(q, d) = coord(q, d)boost(q)cossim(q, d)doclen(d)docboost(d) (6.3)

Equation 6.3 brings all the factors from the listing together. This is the function that is

used by Lucene to score documents in conjunction to queries.

6.3. Web Document Search

Another option beside the local knowledge (section 6.2) is the search via search engines

that return web documents. The advantage for this option is that the web always

contains the latest information and a much wider range of knowledge. Section 6.3.1

deals with the selection of queries and the how they were delivered to the related module.

After this the readability of the document will be discussed in section 6.3.2.

6.3.1. Queries

To request the search engines in a smart manner, just a few queries are selected for

this procedure. The problem can be that the search engine blocks the system because

the API limit was reached with just a pair of requests or answered questions. On the

other hand the answer can suffer from sparse information that was provided from just a

few queries. The accuracy and precision of leading search engine companies is the main

thing, that the local system must rely on to successfully rate the results.

The system proposed in this thesis uses the at least three queries for each question, thus

for each question answering process that was started.

6.3.2. Readability Techniques

The readability of the retrieved web documents is the crucial part here. The worst case

for the system is a document, that the parser can not parse and the text annotation

75

6. Query Processing

pipeline fails to estimate Part-of-Speech tags, named entities, sentence boundaries and

all other parts.

The problem is to get the main content out of the complete HTML file that was retrieved.

When the web site is opened up in the browser, the visual inspection of the site can clearly

determine which part of the content is the main part, which parts are listings, tables and

how important they are. As a computer this task is harder to solve. Two frameworks

are selected to tackle this problem. The first one is JSoup which was developed to

manipulate the structure of a HTML document and provides an easy mechanism to

download web documents. The second framework is Palladian which has provides more

tools and mechanisms for content readability and text classification. These both are

introduced in section 2.3.5 and evaluated in section 8.2.4.

6.4. Query Processor

The processing of the question that was transformed into a query is the main part of the

QA process. It unites the query plans (section 6.1.2) with the indexed documents from

the knowledge base (section 3.1.3) as well as retrieved documents from search engines

(section 6.3). Therefore, some preparations are necessary which will be explained in

section 6.4.1. The process to find answer candidates for paragraphs and facts (and lists

which consist of n facts) will be described in sections 6.4.2 and 6.4.3. Afterwards, the

creation of answer candidates will be discussed in section 6.4.4.

6.4.1. Build-Up

The relevant documents that were retrieved in the Lucene search process (6.2) are passed

into the processor and need to be sorted. For this the documents will be re-arranged.

The documents with the highest scores are on top of the list (descending order). Cur-

rently the system has a variable QP MAX DOCUMENTS that decides the number

of documents used for the process. By default this value is set to 10. So the list of

documents will be cut off after the QP MAX DOCUMENTS element. All of these

documents are then opened up from the systems index and each query plan will be ap-

plied to each document. A query plan contains an answer representation (AR) attribute

which decides the direction of the query plan. If the AR value equals to LIST or FACT,

the procedure described in section 6.4.2 will be applied. Otherwise, the AR value equals

PARAGRAPH, the procedure for paragraph generation will be administered. This pro-

76

6. Query Processing

cedure will be discussed in section 6.4.3. That the query processor is a crucial part of the

Figure 6.3.: Conceptual description of QueryProcessor module. Each query plan is ap-
plied to each document. After the generation of answer candidates, plausi-
bility checks and scoring are applied.

system can be seen in figure 6.3. All generated query plans are processed on each doc-

ument with the goal to generate answer candidates. These candidates are later filtered,

sorted out and scored to receive a ranked and sorted list of possible answer hypotheses.

6.4.2. Processing Facts

For the processing of facts index information of the annotated text document plays a

significant role. This information was motivated and described in section 4.8 and is

used to index verbs, nouns, entities and a few more important word types. These index

structures are used for this part of the thesis to rapidly find relevant parts in large

documents.

Finding Relevant Sentences

Relevant sentences are those which contain parts and expressions of the question as well

as possible targets. To find the relevant sentences out of thousands of them the index

77

6. Query Processing

structures are used as sets. The attributes of a query plan (described in section 6.1.2) are

applied and sentence that contain specific parts of the query plan are scored accordingly

to the containing parts. For this, the system calculates intersections of the sets in the

corresponding index.

As an example, if a question contains the verb ’bauen’, then ’bauen’ and its synonyms are

stemmed and assigned to the query plan’s action-part. The system then tries to lookup

the index for the verb ’bauen’ and its synonyms. For this example, we assume that

sentences {4, 9} contain this verb. Furthermore the system tries to find the focus-part of

the query plan. In this example the found focus lies on the found entity ’Z4’ which the

system found in sentence {9}. To bring this example to an end, the intersection of the

focus and the action-part ({9} = {4, 9}∩{9}) leads us to the conclusion that sentence 9

is more important and therefore this sentence is scored with a higher value. If one part

of the query plan was found the containing sentence is added to the found structure. All

of these structures are introduced below:

actionFounds Contains all ids of sentences that contain a member of the query plans

action list, where the verbs index of the document is used

focusFounds Contains all ids of sentences that contain a member of the query plans

focus list, where the nouns and entities index of the document is used

hintFounds Contains all ids of sentences that contain a member of query plans hint and

part list, where the nouns and entities index of the document is used

These 3 lists contain the relevant sentences ids. To find out which of these sentences

are more important, an intersection is calculated for all variations (of the list) which

leads to 7 lists after the operation (each list itself, two lists in combination and a list

containing all three criteria).

The list that contains all three criteria named bullsEye.

After the placement of all sentences in the correct list (with different initial scoring),

each sentence is processed to find the correct answer.

Finding Possible Candidates

Finding the correct target (which is also a part of the query plan) comes after the

selection of relevant sentences. Therefore, the algorithm travels through the sentences

from left to right and if the correct POS tag (or tags, in case of a target with more than

78

6. Query Processing

word) occurs the system adds this word to the list of answer candidates.

After this a bunch of scoring boosts are performed by the system:

• Add occurrence of action, focus and hint items

• Set the length of the target and the corresponding answer candidate

• Add occurrence of an item from the part list

Some plausibility checks are done afterwards. The checks deny possible candidates that

contain words that are not allowed in an answer string. These checks include all words

of the focus and hints structure as well as all words like ’eines’, ’ihrer’ and some other

words that are wrongly classified by the POS tagger. The module that solves this task

name AnswerFilter and loads a database that contains a word list of German words,

that are often misclassified and not likely to be the answer.

If the answer candidate passes all of these stages, it will be added to the set of possible

proven candidates.

6.4.3. Processing Paragraphs

In general, the generation of a paragraph can be divided into two approaches. The first

is the extraction approach which selects words and phrases that are already exist in

the text to create the paragraph. The second approach is named abstraction approach

and it creates an internal semantic representation of the text and creates the paragraph

using a NLG module which brings the semantic representation to a bunch of sentences.

For the abstraction approach far more knowledge is needed, so this work is based on the

extraction-based approach.

The system implements two different extraction-based algorithms. The first is specialized

on building a paragraph out of the hints of a query plan and the second follows a story

line to create the answer.

Hint-based Paragraph

This algorithm is used for answer types that provide a description, explain a reason or a

term. For this, the sentences from all relevant documents that most accurately match the

question are merged together to build a paragraph with a formerly determined number

of sentences.

79

6. Query Processing

Story-based Paragraph

A story has a story line which consists of actions and focuses. This story is used to create

more complex paragraphs. For instance the answer type HUM DESCRIPTION, which

expects a statement about birth, childhood, profession, family and optional death of a

human individual. Each part of the story contains the actions (verbs), focuses (nouns

and entities), the order in the paragraph and the number of sentences. This can be seen

as a few sub queries that solve a different problem, in particular find sentences that

match the requirements of a part of the story.

6.4.4. Answer Candidates

All of the above created answer candidates are then transported to the Answer Pro-

cessor which will be described in chapter 7. The candidates are transported in a list

of AnswerCandidate elements. Candidates of all query plans are combined in this list.

The achieved scoring so far is attributed to each candidate in the list. Also all answer

representation types (FACT, LIST and PARAGRAPH) are combined in this list.

80

7. Answer Selection & Presentation

To find the correct answer to a given question the extraction of candidates is very

important. Another important problem to solve is the ranking of text, more precisely

relevant text. This chapter deals with the ranking of possible answer candidates and

how they will be presented to the questioner (consult figure A.7 for the context of this

module). Section 7.1 deals with the most important module of the system regarding

to answer selection and representation. Here the inappropriate answer candidates are

filtered out and the candidates are ranked in terms of their relevance. After this was

done, the answer representation will be applied to display the answer correctly.

At the end of the process the natural language generation comes into account. This

module explains in a sentence how the system understood the question and which answer

was retrieved. This additional part of the system is described in section 7.2.

7.1. Answer Processor

The answer processor gets the list of answer candidates (as explained in 6.4.4) and the

option to filter answers (as section 7.1.1 will describe). This option can be seen as

a boolean switch, that can take the two values: true and false. After this step the

candidates can be registered into the answer process (section 7.1.2) and will undergo a

final re-arrangement of the scoring. This answer process is interrupted if the primary

estimated answer representation type is a PARAGRAPH. For this, the created paragraph

will be used and displayed. This decision will be discussed in section 7.1.3.

7.1.1. Answer Filters

Answer filters are an additional feature. The answer filter used here has two function-

alities that are necessary to succeed the Question Answering pipeline. The first one is

to filter out words that are accidentally misclassified by POS or NER but chosen to

be a valid answer candidate. This was already described and used in section 6.4.2 to

81

7. Answer Selection & Presentation

filter misclassified words and avoid adding them to the answer candidates. This has the

advantage of deleting wrong candidates early and to not let them all the way through

the system. The second functionality is the filter by semantic criteria. The answer filter

is also capable of filtering candidates that are not plausible to be a date, a weight or

distance.

If the query plan contains the answer type NUM DATE which is looking for date/time

values then −1 is not a plausible answer. The answer filter takes care of this and can

be called system-wide in a static manner.

7.1.2. Register & Rank Answer Candidates

After the filter process was done, the candidates that still exist can be registered to the

answer candidate set of the final answer. For this, all candidates were transferred to a

separate list. If a candidate string occurs twice, the scores were added to a counter for

each string. This increases the likelihood to find a possible interesting candidate. The

redundancy of information leads (in this case) to the significance of information. This

rule can be applied of this level of information where all unnecessary words (stop words

and irrelevant parts) are removed.

The accumulated scores of the combined candidates are then re-arranged with the highest

value on top of the list. It is important to keep in mind that lists (containing a specific

number of facts) need a threshold value for the elements of the list. Currently this is

not implemented. If the question asks for a list of facts the system always returns 5 or

10 items. For further development a real threshold should be established to cut off the

list correctly.

7.1.3. Apply Answer Representation

The answer representation, explained in section 5.6, comes into account now. During

the Question Answering process the query plans traveled through documents, retrieved

a massive amount of information and created paragraphs. To decide the information

that can be displayed, the decision of the primary answer representation type is very

important.

The answer representation type can come to the following conclusions:

FACT Chooses the answer candidate that has the highest score.

LIST Chooses a selection of the answer candidates with the highest score.

82

7. Answer Selection & Presentation

PARAGRAPH Decides to display the query plan that contains the story or paragraph

with the highest score.

After the decision which answer and answer type will be represented, the candidate/s

are assigned to the answerString which is the attribute that shows the final answer.

This answer is provided using all semantic information to perform a Natural Language

Generation that tries to build a sentence.

7.2. Natural Language Generation

After all decisions and the process that turns a raw text question and a generated

query into an answer string, the answer needs to be displayed correctly and in human

language. For this, the system has a natural language generator, that combines two core

functionalities:

• Explain how the system understood the question

• Integrate the answer string into a well-formed sentences

These two features are shown with two example questions below:

Question: "Welche Maschinen baute Konrad Zuse?"

1) Gesucht ist nach N Produkten mit den Tätigkeiten ’baute’, ’bauen’(bzw. ’baute’, ’bauen’)

in der Vergangenheit und der Person ’Konrad Zuse’ .

2) Die gesuchten Produkte sind Z1, Z2, Z3, Z4.

Question: "Welche Firma stellt den iMac her?"

1) Gesucht ist nach 1 Organisation, Verein oder Firma mit der Tätigkeit

stellt (bzw. ’stellen’, ’her’) in der Gegenwart und dem Objekt ’iMac’ .

2) Die gesuchte Organization, Verein oder Firma ist Apple Computer.

83

8. Experiments & Evaluation

The system that was introduced during the previous chapters undergoes experiments and

will be evaluated in this chapter. Additionally, it depicts the experimental environment

and the involved parts. The experiments are ordered by the position of the system

under test in the entire processing pipeline. This thesis evaluate just chosen parts of

the system, but there are a lot of other possibilities for experiments. Therefore, further

experiments are presented in section 9.2.2.

8.1. Introduction

This section introduces the experimental environment and the workflow during the ex-

periments. The most important aspects are covered here - all other aspects can be found

in the sources directory or the documentation of the system.

8.1.1. Annotation for Model Training

The annotation of training data follows a simple principle. Each annotator that helped

to collect data samples for two tasks (answer type detection and answer representation)

follows the same constraints. A question is annotated with the top-class, sub-class and

the question itself. Below an example is shown:

entity#body#Welcher Teil des Körpers beinhaltet das Limbische System?

Using a script this question is automatically processed and assigned to two data sets.

The first set for the top-classes and the second set is the set for the ’entity’ classifier.

Welcher Teil des Körpers beinhält das Limbische System?#ENTITY

Welcher Teil des Körpers beinhält das Limbische System?#ENT_BODY

The first question is used for the training of the classifier that decides the top-classes

and the second question is used to decide the sub-classes of the ’entity’ top-class. For

the Answer Representation task the data is annotated in an analogous manner.

84

8. Experiments & Evaluation

Welcher Teil des Körpers beinhält das Limbische System?#FACT

Wie definiert man Informatik?#PARAGRAPH

Welche Tiere können fliegen?#LIST

8.1.2. From Phrase to ARFF

In the previous section the annotation of a phrase was described. This section resumes

the previous section and shows the way from the correctly annotated phrase to a feature

vector that can be used for training models - in this system, artificial neural networks

using the Weka3 framework.

The first step is to start the chiAQuery system with the following parameters:

java -jar caqy.jar features v4AT <phrase file>

The output of the system is a feature vector that the statistical feature extractor deter-

mined on all of the phrases. This vector (with the corresponding label) is expressed as

displayed below:

0.2, 0.1, 0.0, 0.782, ... ,0.1,ENTITY

The last step is to generate a valid ARFF file out of this CSV file format. For this step,

the KNIME toolbox was used with an easy tool chain that consists of reading CSV file

and writing (if valid) to an ARFF file.

8.1.3. ChiaqueryQABenchmark module

The module that was developed to evaluate QA performance takes a file with the question

and some corresponding information.

<question>#<answer_type>#<detailed_answer_type>#<representation>#<answer>

Wann starb Konrad Zuse?#NUMERIC#NUM_DATE#FACT#1995

The response of the system contains a lot more information about the processing. After

the question itself, the most likely answer types are responded (winner, second and third)

as well as their sub classes. Next, the two (winner and second) answer representation are

displayed, before the answer type confidences of the first two answer types are printed.

In this example the system decides with a confidence of 99, 9% that the question asked

for a ’date’. And the last statements are about question confidence QC and answer

accuracy ACC.

85

8. Experiments & Evaluation

Wann starb Konrad Zuse?#NUMERIC#ABBREVIATION#NUMERIC#NUM_DATE#

ABB_EXPRESSION#NUM_DISTANCE#FACT#PARAGRAPH#

atConfidence1:0.9990258902307149#atConfidence2:4.989532312230247E-4#

qc:0.2300568218279387#acc:64.34#

1941;1955;2010; ...

8.1.4. Error Classes

The evaluation of a QA system is not an easy task. The question: ’What is a good/excellent

answer?’ very is subjective and sentimental. Answers that expect a fact or a list of facts

can be evaluated in a more objective manner, but this is not possible for entire para-

graphs. Maybe all words of a given list appear in the paragraph (which is good), but

a human can’t understand the paragraph because the sentences are badly combined to-

gether. Not all of these problems are solved with the error classes, explained in figure

8.1, but the quantitative way of an evaluation is covered with that. In the field of Ques-

Class Description
Excellent For PARAGAPH, LIST and FACT the answer must

contain all terms.
Good For LIST and PARAGRAPH the answer must con-

tain more than one term. For FACT the answer must
appear in the top 5 ranked answers.

Sufficient For LIST and PARAGRAPH one term must appear
in the answer. If the representation is FACT, then
the answer must appear in top 10 ranked answers.

Bad No relevant term could be found in answer set. Only,
if a possible answer could have been found in the set.

Figure 8.1.: Error classes for Question Answering

tion Answering, the only method to evaluate subjective paragraph quality, is to have a

number of subjects that all evaluate the same paragraph. After that, a mean value can

be calculated about all statements of the subjects. Unfortunately, due to sparse time

and resources, this method could not be applied in this thesis, although it would be the

preferred way of evaluation. Note that answer sets used for the evaluation can also be

incomplete or defective.

8.1.5. Experimental Data Sets

Here all created sets are introduced shortly. To have a broad range of questions, espe-

cially for the open domain question answering evaluation, some question sets are recorded

86

8. Experiments & Evaluation

from different pages and sources. This was done to ensure the diversity of questions from

different areas from general knowledge to knowledge of sport topics. The goal was to

enhance the representative of the experiment with the use of different sets from several

areas.

All of these sets are introduced and evaluated by quantity in this section.

Q50

This set was created using 50 modified questions from the DATD data, that was already

explained in section 2.4.3. These questions were manually answered using web research

and encyclopedia. This data set is the second largest that was used to evaluate the

system built in this thesis.

Q100

Q100 was used for the content readability experiment and consists of 100 questions,

randomly chosen to get responses from the search engine. For this set, no answers were

needed, because the content readability experiment just needs documents to find the

main content of the page.

Einbürgerungstest / Citizenship Test

The ’Einbürgerungstest’ was acquired from a website1 that offers free citizenship tests

for the Federal Republic of Germany. 62 factoid questions were chosen and some of them

modified to fit in the criteria of the system and its benchmark module.

Einstellungstest / Recruitment Test

The recruitment test set ’Einstellungstest’ was acquired from an online portal2 that asks

questions for job applicants. This set consists of 24 questions from all categories that

the portal offers.

1Source page of this data set: http://www.einbuergerungstest-online.eu/fragen
2Source portal of ’Einstellungstest’ set: http://www.einstellungstest-

fragen.de/category/allgemeinwissenstest/

87

8. Experiments & Evaluation

Sport Quiz

To test the system also in the area of sport, the ’Sportquiz’ set was created with questions

from a sport page3. Just 9 questions matched the criteria of the system for a question

and these are inserted into the set.

WWM

The German version of ’Who Wants to Be a Millionaire’ is called ’Wer wird Millionär’.

In this show the candidate must answer questions to win money and with the last and

most valuable question the candidate wins 1 million euros / dollar. 15 out of 42 of the

questions, that had 1 million euros / dollar of worth, are combined in the ’WWM’ set4.

TSDD

One possible use case of the system is the Technische Sammlung in Dresden, where

the robot of the HTW cognitive robotics research group is located. For that, some

documents (slides, texts and web paes) were acquired and preprocessed. The questions

on that data set are restricted to the domain of the museum exhibits. The number of

questions for the ’TSDD’ set is 11 in total.

8.1.6. The Experimentation Environment

For all of the following experiments one machine was used for the tests. The machine is

an Apple MacBook Professional that runs on ’OS X 10.9.5 (13F34) ’, was manufactured

in early 2011 and was set up with 16GB DDR3 (1333MHz) working memory (RAM).

The data is stored on a SSD (Solid-State-Disk) of the type ’Samsung SSD 840 EVO

250GB Media’ connected to the bus via SATA . The used processor named Intel Core

i5 which runs on 2,3GHz.

8.2. Experiments

After the introduction to the mechanisms around the experiments this section deals

with the experiments itself. The experiments are organized as they appear during the

Question Answering pipeline.

3Source for sport questions: http://www.raetselstunde.de/quiz/sport-quiz.html
4Data acquisition from the site: http://www.bild.de/unterhaltung/tv/wer-wird-millionaer/feiert-15-

jaehriges-bestehen-alle-42-millionenfragen-zum-nachquizzen-38179838.bild.html

88

8. Experiments & Evaluation

8.2.1. Answer Type Detector

The answer type detection experiment tackles the part of the system that was described

in section 5.5. In this experiment, the Weka framework (section 2.3.2) was used with

the pipeline described in 8.1.2. At first, the features of the detector were hand-written

rules combined with some statistical decisions. These features (Baseline approach) - the

dimensions of the feature vector - are explained below:

Question words The appearance of the most significant question words (binary)

Known Entities The appearance of the most significant known entities for each class

(numeric, cumulative by number occurrence)

Grammatical Footprint A distinctive transformation of the grammar into a n dimen-

sional vector

Tense and Named Entities The occurrence of named entities and the tense (binary)

This baseline approach had the disadvantage that it was engineered by hand (manually)

and the feature set was the same for each classifier, the main classifier and the classifier

that determines the sub classes. Especially for sub classes that provide just 2 (abbrevi-

ation) or 4 (description) sub classes, the curse of dimensionality (also known as Hughes

effect) comes into account. The number of data samples for some sub classes was too low

related to the high dimensional feature vector. After noticing the bad performance of

this approach, the idea of the statistical feature detector was established. These features

were already explained in section 5.5. With this approach, each class that is determined

using the classifier has a likelihood value on each perception layer. This means that the

dimensionality of features increases with the number of classes to determine in a linear

manner. In some cases as well as in this thesis, for a classifier that determines between a

little set of classes, the training samples set is also smaller. With the new V4 perception

approach, the classifier suffers less on the curse of dimensionality. Furthermore the some

features of the baseline approach are encoded in the binary way. This leads to just two

states of this feature {0, 1}. To take more use out of a single dimension, the enhanced

approach uses all features as probability values with a continuous value range of [0, 1].

Figure 8.2 illustrates the comparison between baseline and V4 approach by overall ac-

curacy of the main classifier (classes) and all sub classes.

The training needs to be well organized to prevent the system from overfitting. As figure

5.7 in section5.5 depicts, two parts of this system needs data for training. At first the

89

8. Experiments & Evaluation

Class Baseline Acc. V4 Acc.
CLASSES 71.1% 85.9%

ABBREVIATION 74.6% 83.3%
DESCRIPTION 77.3% 83.7%

ENTITY 44.2% 89.1%
HUMAN 81.0% 93.3%

LOCATION 55.2 % 83.8%
NUMERIC 64.8% 88.7%

Figure 8.2.: Comparison of accuracy values between baseline classifier and V4 architec-
ture.

statistical feature extractor needs to be trained. Therefore the data set ’DATD-1’ was

used. For the training of the neural network, the ’DATD-1’ set was also applied for

training. The network learned the mapping from the perception (V1 up to V3) and

puts it together. After that ’DATD-2’ was applied for testing the network. Both, the

statistical feature extractor and the network are trained with the same set, because the

network should learn the mapping for the same data set. The then used ’DATD-2’ set is

an unseen set to the trained classifier. The both data sets are described in more detail

in section 2.4.3. The results of this experiment are shown in figures A.10, A.11, A.12,

A.13, A.14, A.15 and A.16.

Below the ROC space for this experiment are illustrated in figure 8.3. Here the x-axis

represents the false positive rate and the y-axis is denoted as true positive rate. The re-

ceiver operator characteristics for all the sub-class classifier can be seen in the appendix

in figures A.1, A.2, A.3, A.4, A.5 and A.6. All ROC illustrations are following the same

pattern. V4 data is displayed using a star and baseline data uses a circle. Furthermore,

each class (for both classifiers) is colored with a unique color. Figure A.3 waives any

legend, because of the high number of classes. Therefore, just stars and circles are drawn

to compare the performance.

8.2.2. Answer Representation

The representation of the correct answer and the used features were already explained

in section 5.6. For the task of Question Answering this task is very important because

this classifier decides the form of representation and thereby which query plans are used

as well as which plan was filtered out. For this experiment the Weka (section 2.3.2)

framework with the explained experiment pipeline (section 8.1.2) was used to train a

classifier for this need. Figure 8.4 show the results of the experiment, evaluated by

90

8. Experiments & Evaluation

Figure 8.3.: ROC space of CLASSES experiment. Comparison between baseline and V4
classifier.

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0,774 0,105 0,801 0,774 0,787 0,675 0,906 0,855 FACT
0,849 0,073 0,844 0,849 0,846 0,775 0,950 0,897 PARAGRAPH
0,898 0,065 0,871 0,898 0,884 0,826 0,963 0,940 LIST
0,839 0,082 0,838 0,839 0,838 0,757 0,939 0,897 Weighted Avg.

Figure 8.4.: Results of the answer representation experiment

the performance measures explained in 2.1.3. The overall accuracy of the experiment

was 83.865% where 502 samples were used for this experiment. The system was 10-fold

cross validated. The confusion matrix, illustrated in figure 8.5 breaks down the recall

as FACT as PARA as LIST
FACT 137 22 18
PARA 20 135 4
LIST 14 3 149

Figure 8.5.: Confusion matrix of answer representation experiment

values of each class. This figure shows how many ’FACT’s are classified ’as LIST’s for

91

8. Experiments & Evaluation

instance. The Recall value for the ’LIST’ class is the best, followed by ’PARAGRAPH’

and ’LIST’. For this experiment the configuration ’-L 0.4 -M 0.15 -N 1500 -V 0 -S 0 -E

Figure 8.6.: ROC space of the Answer Representation classifier

20 -H a -D’ of the Weka Multilayer Perceptron was used. To complete this experiment

the ROC space of the experiment is shown in figure 8.6. The x-axis represents the false

positive rate and the y-axis is denoted as true positive rate.

8.2.3. Query Generation Algorithm

In this experiment, the two algorithms illustrated in figures 6.1 and 6.2 are tested against

each other. Query generation is a crucial part of the system to find relevant documents

(see section 6.1). Because a set of more and often reformulated queries perform better

than just one query (or the question unprocessed as query), these two algorithms were

developed. The experiment uses the ’TSDD’ questions. Both algorithms are compared

against each other in two criteria.

The algorithm that reaches a higher Lucene score shows that it is possible to find more

related documents than the other algorithm, which is, for this experiment, the measure

92

8. Experiments & Evaluation

of quality. Another criterion is the average score of all Lucene requests. For that the

query scores, denoted as qs, for each query that a algorithm produces are added up and

were later (eq. 8.1) divided by the number of produced queries N .∑N
n=0 qsn
N

(8.1)

The results are shown in figure 8.7. The two criteria ’best’ and ’average’ score are listed

and the two algorithms are compared. Algorithm B reaches, on both criteria, the more

Algorithm A Algorithm B
Best Doc Score 18.18% (2/11) 81.81% (9/11)
Avg. Doc Score 36.36% (4/11) 63.63% (7/11)

Figure 8.7.: Result of Query Generation experiment

accurate results. 81.81% percent of the data reached the higher document score using

algorithm B. Furthermore, algorithm B also reaches better results for the sum of qs to

N ratio.

8.2.4. Content Readability Experiments

The readability experiment is important for the task of open domain question answering.

This part of the system was already introduced in section 6.3.2. The problem here is

to extract the correct part of a HTML page, in this case the correct part is the main

content of the web page (without sidebars, headers, footers and other parts). Content

readability is a subjective problem of perception and feeling. Therefore the data set

Q100 (explained in section 8.1.5) was used and all documents that were retrieved by the

systems were stored in systems cache. After that, the experimenter extracted each main

part of each HTML document. Afterwards, each system used to ensure the readability,

did the same on the documents. A script compares the results from the experimenter

against the results from both systems. The 100 questions retrieved 997 documents (3

URLs could not be reached). The results are shown in figure 8.8. Here the quality of the

output is measured in 3 categories. ’Correct’ means the output of the system matches

the string of the experimenter. ’Nearly’ means that the returned string contains the

main content, but also contains other tokens. A token means a letter or digit that is

displayed on the web page after stripping all HTML tags and non-visible parts of a web

page. This could be a part of the navigation bar that was wrongly classified as main

93

8. Experiments & Evaluation

JSoup Palladian
Correct 391 / 39,2% 758 / 76,0%
Nearly 401 / 40,2% 198 / 19,9%
Wrong 205 / 20,6% 41 / 4,1 %

Figure 8.8.: Experimental results of the content readability experiment

content. To reach the ’Nearly’ class the returned string could have 1 up to 200 wrongly

classified tokens. The ’Wrong’ class contains all documents that maybe contain the

correct content but, and that is important, contains more than 200 other tokens that

are not relevant.

8.2.5. GSON Performance

For the serialization of the annotated documents and their index structures a format

called JSON was used. To handle the serialization with JSON the system used GSON

(Googles library for JSON). GSON was already introduced in section 2.3.6. The focus

of this experiment was on input and output speed as well as on file size of the annotated

documents.

Two processes are depending from the values that are evaluated here. The first process

is the indexing of documents (file size and write performance are evaluated here) which

needs to be fast because the user don’t want to wait if the documents are annotated

during external index processor or when the program indexes the files from the web on

the fly. The second process is the answering of a question (read performance will be eval-

uated here) itself. This process opens the files and uses them to find the correct answer

quickly. For the file size criterion each annotated document file size was divided by the

Criterion Measured Value
File Size 38.3x

Avg Read (In) 0.127 sec
Avg Write (Out) 0.065 sec

Figure 8.9.: Results of GSON Experiment

corresponding original file from the corpus. The resulting value points out how much

times larger or smaller the annotated file is than the original file. For this calculation

all documents from the TSDD (introduced in section 2.4.4) data set were annotated.

To measure the write performance the indexing process was used. For all indexed TSDD

documents the time from creating the JSON document up to the write operation was

94

8. Experiments & Evaluation

captured. Similarly, the read performance used the same measure points for this ex-

periment, but the involved process was another one. The system received 3 different

questions and opened up the documents. The time for open up each document and

convert the JSON-string into the write Java object was measured. Over each run the

measured times were averaged.

The result of these experiment can be seen in figure 8.9. The file size increases very

rapidly and is 38.3 times larger than the original document. The bad result of reading

a document (0.127 seconds) is caused by time intensive mechanism of mapping complex

JSON objects into valid Java objects. The write operation is relatively fast and was

boosted with the fastest possibility in Java to write into a file. The time consuming part

during the write is the convert process from Java object into JSON representation.

8.2.6. Closed Domain Question Answering

The first experiment that covers the overall system performance (from question to an-

swer, all components from chapter 3 to 7) works on the TSDD data set (using 11 ques-

tions) that was already explained in section 8.1.5. This data set contains questions that

could be answered, because the answer exist in the data set. Nonetheless the system

needs a suitable formulation of the content to find the correct answer. To complete this

experiment the benchmark module of the system was used (explained in section 8.1.3).

As figure 8.10 illustrates the system was able to answer 27.27% correctly and 63.63% of

Class Percentage
Excellent 27.27% (3/11)

Good 36.36% (4/11)
Sufficient 27.27% (3/11)

Bad 9.1% (1/11)

Figure 8.10.: Performance of Closed Domain QA

the questions could be answered indirectly (contained the correct answer in the top 5

or top 10 answers). Beside the results of the correct answer, the system made decisions

Percentage
ATD 72.72% (8/11)

ATD second 66.6% (2/3)
ARD 81.81% (9/11)

ARD second 100.0% (2/2)

Figure 8.11.: ATD and AR results of Closed Domain Question Answering

95

8. Experiments & Evaluation

on a few more parts. These parts are listed with their accuracy in figure 8.11. Here the

Answer Type Detector and the Answer Representation Detector as well as their second

choices are shown. The percentage values of the second choices are calculated by the

divison of all questions (samples) where the second choice of the system was correct

through all samples that were classified wrong.

8.2.7. Open Domain Question Answering

This experiment evaluates the overall system performance (from question to answer, all

components from chapter 3 to 7) for open domain question answering. The open domain

refers to a lookup to relevant search engines. For this task some data sets were acquired

and described in section 8.1.5. Out of this collection the sets ’Q50’, ’Citizenship Test’,

’Recruitment Test’, ’Sport Quiz’, ’WWM’ are used. Together all of these sets provide 157

questions. The accuracy statistics of this experiment are illustrated in figure8.12. The

Class Percentage
Excellent 24.2% (38/157)

Good 32.48% (51/157)
Sufficient 25.48% (40/157)

Bad 17.84% (28/157)

Figure 8.12.: Performance of Open Domain QA

system reaches 38/157 (24.2%) at ’excellent’ class and in 129/157 of all cases (82.17%) the

system maintains to provide an answer directly or indirectly. Figure 8.13 demonstrates

Percentage
ATD 73.25% (115/157)

ATD second 64.29% (27/42)
ARD 81.53% (128/157)

ARD second 93.1% (27/29)

Figure 8.13.: ATD and AR results of Open Domain Question Answering

the performance of the Answer Type Detector and Answer Representation Detector.

The detector of the answer type reaches 73.25% accuracy and the correct representation

of the answer was estimated in 128 of 157 cases (81.53).

96

8. Experiments & Evaluation

8.3. Evaluation

This section deals with the evaluation of the experiments and discusses their results.

All section are listed in the same order as the experiments, which are ordered like their

appearance in the system during the execution of the QA process.

8.3.1. Answer Type Detector

The corresponding experiment was described in section 8.2.1. The comparison between

the baseline and the V4 approach points out, that V4 offers more accurate results,

especially when the classifier needs to determine between many classes.

Figure 8.14.: Baseline classifier confusion
matrix. Classes HUM and
NUM produce the most confu-
sion.

Figure 8.15.: V4 classifier confusion matrix.
The classification of class ENT
can be seen as a problem and
the improvement should be an
object for further experiments.

Figures 8.14 and 8.15 illustrate the confusion matrices of both classifiers. These figures

can be read from the left labels to the top labels and the corresponding cell. An exam-

ple using figure 8.15: ”The percentage of entities (ENT) that were wrong classified as

locations (LOC) is 3.53%”. The V4 confusion matrix can be seen as more accurate, but

the classifier still struggles telling entities from non-entities. The entity class contains

22 sub classes and therefore this class has the highest diversity (see figure A.8 for the

classes). Therefore the classifier had problems to properly separate the features. This

problem should be tackled in further work with more detailed work on features for each

class.

Improvements using V4

For instance the entity class which contain the most sub classes. Here the baseline ap-

proach (44.2%) is outperformed by the V4 approach (89.1%) by 44.9% in accuracy. After

97

8. Experiments & Evaluation

the visual inspection of the results it can be stated that the separate scaling of feature

dimensions (each class has just one dimension in each perception layer) works well. The

chosen n-gram features for each perception layer are more robust against mistyping of

words or other formulations with the same stem or word root. Also the extension and

inclusion of SemMap and SynMap (perception layer V3) bring more accurate estimation

results.

Fast Extractor Training

Beside the improvements in accuracy, the new V4 approach also brings a flexible and

fast possibility to train alternate class taxonomies. The extractor tears the question

and the label apart and automatically learns the Bayes model. After the learning step

the feature detector returns feature vectors to all phrases that hits the system. With

these vectors, a new model can be learned. This approach has a lot similarities to the

latest deep learning approaches with the possibility to easily extend the Bayes model

with more particular features.

8.3.2. Answer Representation

The experiment on answer representation was already introduced in section 8.2.2. In the

experiment the accuracy values as well as other measures show values that can be used

as baseline results for further experiments. The detection of facts (accuracy 77.4%),

lists (accuracy 89.8%) and paragraphs (accuracy 84.9%) works more than sufficient for

the goals of this system. The accuracy values were extracted from the confusion matrix

depicted in figure 8.5. The used features seem to be significant enough to tackle the

answer representation task accurately. For further experiments more data is needed and

an analysis of the significance of features should be done using GLVQ (Generalized

Learning Vector Quantization) or similar methods.

8.3.3. Query Generation Algorithm

Algorithm B outperforms algorithm A in both criteria, this was already shown in the

experiment in section 8.2.3. This means that 9 of 11 documents reached a higher docu-

ment score with algorithm B and 7 of 11 documents reached a higher average document

score with algorithm B. With this result, the decision to use algorithm B can be made.

But, this experiment constitutes as a starting point for further evaluations. The chosen

measures reflect the direct scoring of Lucene but not the the final system outcome using

98

8. Experiments & Evaluation

both algorithms. For further experiments, two parameters of the experiment need to be

modified:

• More data is needed. The used TSDD set contains 11 questions. The problem is

the orientation on closed domain, where the indexed data contains a few documents

with a few questions. To conclude, the system needs more indexed data and more

questions that can be answered using the system.

• Question Answering accuracy, maximum query plan scores and computational cost

are more measures that can help to evaluate both algorithms. The current system

uses two measures based on Lucene query score for evaluation. In further experi-

ments the mentioned measures need to be applied to the experimental output.

8.3.4. Content Readability Experiments

The results of this experiment, described in section 8.2.4, are very interesting. The

Palladian system outperforms JSoup by 36,8% in the best class ’correct’. This is very

significant and leads to the conclusion that the algorithm5 used by Palladian works well.

It is based on heuristics about the names for main content layers, text length and link

frequency. In contrast to that, JSoup extracts just the largest text value from all DOM

elements that are div-layers.

This experiment has shown that Palladian appears to be the better choice for the system

proposed in this thesis, because of two reasons:

1. The algorithm is specialized on this task and works with heuristics that are able to

estimate, which makes the algorithm more robust in comparison to the algorithm

used by JSoup.

2. The results are significant and point out that Palladian is the better choice. For

both systems the classes ’Correct’ and ’Nearly’ are combined, then Palladian covers

95,9% of all documents and JSoup covers 79,4%. Here, the benefit for Palladian

is obvious.

8.3.5. GSON Performance

The experiment, described in section 8.2.5, reveals that the current read and write

performance, but especially the read performance must be increased for the processing

5The algorithm was a former implementation of https://www.readability.com and was used, among
others, as plugin for the Mozilla Firefox Readability system.

99

8. Experiments & Evaluation

of a high number of documents (for instance 100 selected documents). Furthermore the

file size of an annotated file needs to be decreased to store more data more efficiently.

Performance

The current average duration of a document read (0.127 seconds) can not be scaled

out to 100 documents without an acceptable increase of time consumption. Solutions

are a smaller structure of objects to speed up the read process or to use the binary

JSON (BSON) for this. Binary objects don’t need to be parsed from a string, they

are already in a computer readable format. Currently, Google GSON doesn’t provide

a BSON implementation but it is planned for the future. For this further experiment

another library can be tested against Google GSON and the JSON versus BSON test

of each library can deliver interesting results, too. For the addressed experiments the

libraries Boon6 and Jackson7 are proposed. JSON was initially considered because of

the number of available parsers for a huge number of different languages and thereby

the possibilities to work with the different outputs of the system. These outputs can be

API results, system states, databases and the annotated documents.

File Size

The file size of an annotated document ends up with 38.3 times more size than the

original file. This value is too high and can be a huge factor when scaling out the

system. Sure the scaled system should provide more machine power and disk space but

the value itself should be optimized in further experiments. To achieve this the use of

BSON is proposed. The binary representation can be compressed and the file size can

be reduced by method. To minimize the file size not depending from the used method,

the annotated data can be distributed with a smart mechanism that stores indexed data

in nodes that were loaded during starting up of the system. The remaining sentences

of the document can be stored in the document that can be lazy-loaded when needed.

Another improvement can be to reconsider the indexed structure and to optimize this

structure.

6Project page https://github.com/RichardHightower/boon
7Project page https://github.com/FasterXML/jackson

100

8. Experiments & Evaluation

8.3.6. Closed Domain Question Answering

As the first experiment that covers and evaluates the complete system performance

(question to answer), the results, presented in section 8.2.6, can be seen as a baseline for

further experiments. The system responded correctly in 3 of 11 cases (27.27%). In 7 of

11 cases (63.63%) the system response contained the correct answer in the top 5 or top

10 of the top ranked answers. This leads to 10 of 11 cases (90.9%) where the answer was

provided by the system directly or indirectly. To improve the quality of the experiment,

two conditions must be modified:

• More questions are needed that cover all classes of the Answer Type taxonomy

and cover all possible knowledge that the data set contains.

• The number of data files (that are locally indexed) needs to be increased. The more

unstructured knowledge exist in the index, the more questions can be formulated.

All in all, the results can be interpreted as a success for the first baseline experiment on

a field with no direct competitors. Systems that were previously mentioned in section

1.3 are reaching approximately the same area of quality.

8.3.7. Open Domain Question Answering

Open domain question answering is one of the most challenging tasks in natural language

processing. Therefore the experiment, described in section 8.2.7, can be seen as the most

important and most complex experiment of this thesis. The complexity comes with the

test of all components of the system that were touched during the run through the QA

pipeline. Regarding this, the experiments evaluated the ’overall system performance’.

The system found the correct answer in 38 of 157 possible cases (24.2%) and the indirect

answer (correct answer exists in top 5 or top 10 ranked answers) in 91 of 157 possible

cases (57.96%). This result looks like the overall performance of systems that were

formerly introduced in section 1.3. The system can’t be compared on a scientific level,

caused by the different language they cover and the test sets they are using, but the

accuracy of the systems is very similar.

One of the most crucial components, the Answer Type Detector, found 115 of 157

correct answer types (73.25%). Also the Answer Representation classifier found 128

of 157 correct representations (81.53%). These experimental results can be seen as a

baseline for further experiments.

101

8. Experiments & Evaluation

Beside these results some problems are mentioned that also belong to an outcome of this

experiment:

• Some questions had no corresponding Answer Type in the taxonomy that the

system currently uses (Li and Roth [26]). During experiments the question was

labeled with the answer type that can be seen as a semantic neighbor of the

question.

• The formulation of some questions was not suitable for this system. This led to a

reformulation of the questions.

• Some questions showed a too complex structure for the current system. These

questions were trimmed to a factoid level or the part after a possible conjunction

was pruned.

These problems were converted to tasks and ideas that should be used for further ex-

periments and system design. Among others, these ideas are registered in section 9.2.

After the open domain question answering experiment and the corresponding results the

comparison to systems, based on English language, should be made. Sure these systems

operate on another language, using other search engines as well as semantic networks.

And the question of meaningfulness comes into account. How reasonable is a compari-

son between ’Apples’ and ’Äpfel’? The immediate comparison should not be made, but

the order of magnitude of the presented results is similar to the systems introduced in

section 1.3. This can be seen as the main conclusion of this experiment which serves as

a baseline experiment for factoid question answering system based on German language.

102

9. Conclusion & Further Work

After all experiments were done, this chapter provides the final conclusion as well as some

further work ideas, that should be done to improve the performance of the system and

helps to evaluate it. Therefore section 9.1 offers the final conclusion after development,

testing and evaluating the system in the previous chapters. After the conclusion was

drawn, section 9.2 introduces ideas and tasks for the current system, further experiments

and ideas for a future system that uses advanced technologies to tackle the question

answering task.

9.1. Conclusion

This section provides a roundup of the developed system, the experiments and evalua-

tion that was done in this thesis. The system was designed to be fast, easily serializable,

process requests in a serial manner and serve in a client/server environment. An experi-

mental pipeline was created to evaluate all relevant components of the QA system. The

acquired data sets helped, to evaluate and test the developed system. These recorded

data sets are very helpful for the German QA community to evaluate systems on similar

(and thereby comparable) data. To this time there exists, to the best of our knowledge,

no system like the one proposed in this thesis. The enrichment of SynMap as well as

SemMap can also be promoted and used for further work and projects in the field of

Question Answering. As a baseline approach this work provides the first results for

Question Answering using unstructured data operating on German language.

9.2. Further Work

This section deals with all things that could not be covered in this thesis, but should be

addressed in the future. Improvements on the current state of the system are covered

as well as further experiments on the current systems. Furthermore, features for a new

or extended system are described. These ideas, suggestions and conceptions result from

103

9. Conclusion & Further Work

the development of the current system and from reading state-of-the-art publications

that provided promising features and experiments.

9.2.1. Current System Improvements

Here, the improvements based on the current system are described. The system can

be, due to its modular structure, extended easily. Some of the improvements, presented

below, can be implemented fast, some need a bit more development or research.

These are the suggested improvements:

Parallelization of tasks This feature was already considered during the development of

the first version, but regarding to the experimental character and linear execution

of the system, postponed to further work. Some tasks, like the normalizers or a

lot of parts of text annotation pipeline can be parallelized and pushed together

afterwards. Furthermore the search on the system with Lucene can be separated

into more than one task.

Robust Web Retriever Beside the use of Palladian for separating the main content of

a web page from other uninteresting parts, the system needs an algorithm that

segment sentences and words correctly as well as erase unnecessary tokens. This

could push the performance of the Open Domain QA system, because the POS

tagger will produce more accurate output.

Regular Expressions for Semantics At the moment the most semantic extractors are

looking for keywords or the extractor decides with if-else conditions. To be more

flexible, regular expressions can be used to find more complex expressions. This is

also a good way to reduce code.

Glue Normalization Glues are a part of a question. If a question contains a ’und’

word or another conjunction the system should split these glues and treat them

separately. For this system no complex questions are assumed, but for further

development the existing pipeline could be applied to question glues and with

a more complex question, the answer representation can also be more complex.

Glue normalization was already considered and partly implemented in the current

system.

Improve Answer Type Taxonomy At the moment, the taxonomy from Li and Roth

[26][27] is used. This taxonomy should be changed especially when the system will

104

9. Conclusion & Further Work

be deployed to a closed domain scenario. The reduction of classes can bring, in

most cases, the reduction of complexity.

Lucene Customization Lucene is used to retrieve documents that may contain the right

answer. To improve the handling of Lucene, the custom scoring as well as the

phrase operator should be established, tested and evaluated. A related system, in-

troduced in section 1.3.4, are currently working with this enhancements of Lucene.

Using Knowledge Bases The approach works on unstructured data, but structured

data can be used to find similarities in a semantic network to classify questions and

for a richer annotation of documents. If the index of the annotated document shows

which sentences contain vehicles, animals, actors and other labels, this could be

very powerful and after a semantic answer type detection, a mapping could answer

a lot factoid questions. Also the relationship between types can be predicted and

correlations can be found. For this, Wikidata1 is suggested. A similar approach

was suggested from Bordes et al. in [3].

From Closed to Open Domain If the system is deployed in a closed-domain scenario,

the system should still have the possibility to answer questions to the web and

process the retrieved documents. Currently the web request have a high latency,

because all documents were indexed on-the-fly which could take more time then

an average user wants to wait. Web sources should be considered only in cases

where the local document sources fail to find an answer with a sufficient score.

Deeper Analysis and Reasoning Currently, the system passes through the pipelines,

described in chapters 4, 5 and 6. This annotation solves a lot of things around

the task of Question Answering, but reasoning and deep analysis of the question

isn’t implemented at the moment. Qanda[32], for instance, generates criteria like

temporal restriction, geographical restriction, salient entity, event, answer restric-

tions and some more. With this, the system can produce a deeper analysis and

reasoning which can help to provide better answers.

SemMap with correlations The implemented semantic network, named SemMap (sec-

tion 3.3.1), contains semantic frames that match given words. Another feature

could be to learn the correlations between semantic frames. Some frames signifi-

cantly often occur together and other frames don’t. So with a learned significance

1Web page of Wikidata project: https://www.wikidata.org

105

9. Conclusion & Further Work

of correlation the SemMap could be enriched and the system could suggest frames

that are most likely to appear. Strong correlation could refer to a frame that often

occurs in the same sentence and weak correlations are correlations that appear in

the proximity of the specific (pivotal) sentence.

Enrichment of verb database The database that finds verbs with the corresponding

tense could be extended using the verbs from the SynMap database (section 3.3.2).

The second solution, the other way round, could be to enrich the SynMap with all

tenses of verbs and to use the SynMap database also for the verb normalization

step.

Integrate verb tense for answer finding Especially for finding correct dates, the tense

of the containing verb is a valuable hint to find the correct answer. The cur-

rent system doesn’t support this feature, but it can be crucial when the question

requires temporal restrictions.

Rank web documents Because Google (or other search engines) provide just a ranking

of documents and no score the system could provide an own ranking. This can be

easily done using a cosine similarity and a dictionary approach. Each word and

all synonyms, variations and semantic neighbors could have a representative in a

n-dimensional vector. Also for each document such a vector is computed. Cosine

similarity then computes the affinity of these vectors to each other.

Variation of search engines The current system uses Google search engine with an

algorithm that find URLs in the result page. For further development, the use of

a Google API or the API from other search engines is recommended.

Thresholding for list elements At the moment, the result list (if the answer represen-

tation requires a list) contains 10 elements (not more, not less). A threshold should

be established to cut off irrelevant items from the list.

9.2.2. Further Experiments

Basic experiments were done in this thesis to evaluate the most important aspects.

For a significant improvement of the overall system and its parts, this section provides

experiments that should be done in the future.

Evaluate JSON/BSON libraries In this thesis Google GSON was used to generate

JSON files. The experiment of GSON performance leads to the conclusion that a

106

9. Conclusion & Further Work

faster library must be found to ensure the performance on a scaled system. Also the

possibility to use binary JSON (called BSON) should be evaluated. In some cases

this can be a few times faster and the file size can be reduced using compression

mechanisms.

Record data for classifiers Because of the limited time and resources the recorded data

for the trained models was very sparse. This can be changed in further experiments

with the use of other data sources or the help of annotators.

Evaluate TF-IDF relation to answer The term frequency with inverse document fre-

quency (TD-IDF) is a well-known measure in the field of information retrieval. If a

term occurs too often in a document, the algorithm ranks down the word. This can

hurt the performance of a QA system, when the question requires a phrase, term,

an adjective or words that are often unimportant for a search engine or retrieval

system. For this, the influence of TF-IDF should be evaluated and furthermore a

more accurate measure should be established.

Query Plan Characteristics The query plan contains of parts that need to be found in

the text. Each of these parts has a specific weight, which controls the significance

of each part in scoring. These weights should be evaluated and the best parameter

set should be found. The suggestions for these is to randomly assign each part a

weight between 0− 1 and try to optimize this vector regarding to the accuracy of

correct questions.

Explore Parameters The configuration file offers the systems parameters. To ensure

the best configuration of these parameters further experiments are needed that

use variations of the parameters to explore robustness and effect on the systems

outcome.

Semantic Extractors The system uses semantic extractors to find named entities or

numbers with semantic relations. To find out how important these extractors are,

this feature should be tested against a system configuration that works completely

without these extractors.

Lucene experiments Lucene was used to find documents that most likely contain the

correct answer. For its work, Lucene uses measures like the cosine similarity or the

overall Lucene score. An interesting question is, how significant is the correlation

between Lucene score and correct answer. The goal could be a scale that can

107

9. Conclusion & Further Work

provide a statement of how likely the system find a correct answer according to a

given Lucene score.

Correlation of System Indicators The system uses two indicators to express its confi-

dence on the actions - QC (question confidence) and ACC (answer accuracy). An

experiment that evaluates the quality and threshold of these measures could be

very important to let the system produce a scale and statement for its actions.

ANN vs. Cosine Similarity The current system uses an ANN to determine answer

types and answer representations. The V4 approach delivers a feature vector

based on statistical values. Furthermore, the cosine similarity appears to be a

fast and often used measure to compare vectors of high dimensional vector spaces.

An experiment could evaluate the speed as well as the accuracy measures of both

approaches on equal test sets.

9.2.3. Future System Ideas

The current system based on a text annotation pipeline that annotates the text and after

that applies all found relations on the previously found documents. Down the road, a

system that achieves more accurate results should base on a more complex framework

or system, that brings in more cognitive and semantic capacity. The following collection

of ideas, rudiments and basic approaches can be applied and implemented on a system,

that, based on all implications of the current system, tries to eliminate the weaknesses

of the current state.

Semantic Annotation Parser Similar to LogAnswer (introduced in section 1.3.1) the

question should be transformed into a semantic network. LogAnswer uses the

WOCADI parser to represent the question in MultiNet. To bring this concept to

the state-of-the-art, networks like Wikidata, SynMap, SemMap, SALSA or Ger-

maNet should be used. Otherwise a new semantic knowledge base should be

implemented to match closed domain scenarios in a more accurate manner.

Agile Answer Type Detection/Taxonomy The taxonomy of the answer type should

be more agile. This means, the number of classes should increase and match the

classes and types of a semantic knowledge base. The QuASE system (explained in

section 1.3.6) uses Freebase to tackle this task, but Wikidata should be the better

choice (Freebase was merged into Wikidata). With this agile taxonomy comes

108

9. Conclusion & Further Work

more complexity but on the other hand more possibilities and a more complete

mapping of possible answer classes.

Semantic Feature Learning In section 3.2 of Sun et al. [41] semantic features are

proposed with a significant improvement of overall QA performance. This features,

a question term to answer term mapping, are learned in a statistical model that

predicates which answer type is likely. This approach can also be used for a few

more tasks in this system.

Use of Cognitive Systems A system that brings in cognitive capabilities and simulates

different structures of the human brain can be a very important addition for a

future QA system. The field of Cognitive Computing and Systems is rapidly

growing and active at the moment. A few systems are already proposed, also on

QA systems [16]. With the use of a cognitive system like OpenCog2 the behavioral

structure of thinking is changed. Other possible systems are ACT-R3, PRS4 or

architectural parts of IBM Watson5.

Integration of a UIMA system Unstructured Information Management represented by

systems like Apache UIMA6 or Catalyst7 is an important task in Question Answer-

ing (or in general handling unstructured data sources). Apache UIMA also allows

to spread the data, support the scalability and contains many useful tools. This

system could serve as foundation for a successful system, that will be scaled out

to a high number of machines.

Handling unconventional questions The current system handles just factoid questions

that are formulated in a straight forward manner. An improvement can be to

handle questions like ’Was gehört nicht zu X? ’ where the possible answers are

suggested and the system has to decide between {A,B,C,D} as answers. Beside

this variations, a few other types of requests are possible.

QA on images An approach that is currently pursued by the computer vision commu-

nity is the possibility to answer questions on images. Malinowski et al. [29], Antol

2Project page: http://opencog.org/
3Adaptive Control of Thought - Rational, specialized on memory and rendering of atomic modules of

cogitations.
4Procedural Reasoning Systems, which follows the belief −→ desire −→ intention model.
5Watson was the first computer that beats a human individual at the famous U.S. television show
Jeopardy!. The system was developed by Dan Ferrucci as project manager of the IBM team.

6Project page: https://uima.apache.org/
7Project page: http://catalyst-fp7.eu/

109

9. Conclusion & Further Work

et al. [1], Gao et al. [17] and Ren et al. [36] are all approaches that address

this task. Karpathy and Li [25] proposed a system based on deep learning, that

generates images descriptions. Together with these approaches a robot (in general

a computer program) can learn about its environment and answer questions about

it. Also searching on a large image database is a possible use case.

110

Bibliography

[1] ANTOL, S., AGRAWAL, A., LU, J., MITCHELL, M., BATRA, D., ZITNICK, C.

L. and PARIKH, D. VQA: Visual Question Answering. CoRR, abs/1505.00468,

2015. URL http://arxiv.org/abs/1505.00468.

[2] BANKO, M., BRILL, E., DUMAIS, S. and LIN, J. AskMSR: Question Answering

Using the Worldwide Web. In Proceedings of 2002 AAAI Spring Symposium on

Mining Answers from Texts and Knowledge Bases, 2002.

[3] BORDES, A., WESTON, J.,COLLOBERT, R. and BENGIO, Y. Learning Struc-

tured Embeddings of Knowledge Bases. August 2011.

[4] BOS, J. Underspecification, resolution and inference for discourse representation

structures. pages 117–124, 2001.

[5] BRANTS, T., HENDRIKS, R., KRAMP, S., KRENN, B., PREIS, C., WOJCIECH,

S. and USZKOREIT, H. Das NEGRA-Annotationsschema. Negra project report,

Universität des Saarlandes, Computerlinguistik, Saarbrücken, Germany, 1997.

[6] BRILL, E., DUMAIS, S. and BANKO, M. An analysis of the askmsr question-

answering system. In In Proceedings of 2002 Conference on Empirical Methods in

Natural Language Processing (EMNLP, pages 257–264, 2002.

[7] BURGER, J. D. and BAYER, S. MITRE’s Qanda at TREC-14.

[8] CAUMANNS, J. A Fast and Simple Stemming Algorithm for German Words. 1999.

[9] CHINCHOR, N. MUC-4 Evaluation Metrics. in Proc. of the Fourth Message Un-

derstanding Conference, pages 22–29, 1992.

[10] CUCERZAN, S. and SIL, A. The MSR Systems for Entity Linking and Temporal

Slot Filling at TAC 2013. In Text Analysis Conference, 2013.

111

http://arxiv.org/abs/1505.00468

Bibliography

[11] CUNNINGHAM, S.J. Dataset cataloging metadata for machine learning appli-

cations and research. In Proc International Artificial Intelligence and Statistics

Workshop, Ft. Lauderdale, Florida, 1997.

[12] ERK, K., KOWALSKI, A. and PINKAL, M. A Corpus Resource for Lexical Seman-

tics. Proceedings of the Fifth International Workshop on Computational Semantics

(IWCS), Tilburg, 2003.

[13] FARUQUI, M. and PADÓ, S. Training and Evaluating a German Named Entity

Recognizer with Semantic Generalization. In Proceedings of KONVENS 2010, pages

129–133, Saarbrücken, Germany, 2010.

[14] FELLBAUM, C. WordNet: An electronic lexical database. The MIT Press, 1998.

[15] FINKEL, J., GRENAGER, T. and MANNING, C. Incorporating non-local in-

formation into information extraction systems by gibbs sampling. In Proceedings

of the 43rd Annual Meeting on Association for Computational Linguistics, ACL

’05, pages 363–370, Stroudsburg, PA, USA, 2005. Association for Computational

Linguistics. doi: 10.3115/1219840.1219885. URL http://dx.doi.org/10.3115/

1219840.1219885.

[16] FURBACH, U., SCHON, C. and STOLZENBURG, F. Cognitive Systems and

Question Answering. CoRR, abs/1411.4825, 2014. URL http://arxiv.org/abs/

1411.4825.

[17] GAO, H., MAO, J., ZHOU, J., HUANG, Z., WANG, L and XU, W. Are You Talking

to a Machine? Dataset and Methods for Multilingual Image Question Answering.

CoRR, abs/1505.05612, 2015. URL http://arxiv.org/abs/1505.05612.

[18] GEIRSSON, Ó. P.l. IceQA: Developing a question answering system for Icelandic.

[19] GLÖCKNER, I. and HELBIG, H. LogAnswer - A Deduction-Based Question An-

swering System. August 2008.

[20] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P.,

WITTEN, I. The WEKA Data Mining Software: An Update. ACM SIGKDD

explorations newsletter, 11(1):10–18, 2009.

[21] HAMP, B. and FELDWEG, H. GermaNet - a Lexical-Semantic Net for German.

Proceedings of the ACL workshop Automatic Information Extraction and Building

of Lexical Semantic Resources for NLP Applications. Madrid, 1997.

112

http://dx.doi.org/10.3115/1219840.1219885
http://dx.doi.org/10.3115/1219840.1219885
http://arxiv.org/abs/1411.4825
http://arxiv.org/abs/1411.4825
http://arxiv.org/abs/1505.05612

Bibliography

[22] HARTRUMPF, S. Hybrid Disambiguation in Natural Language Analysis. Der An-

dere Verlag, Osnabrück, 2003.

[23] HELBIG, H. Knowledge Representation and the Semantics of Natural Language.

Springer Science & Business Media, 2006.

[24] HENRICH, V. and HINRICHS, E. GernEdiT - The GermaNet Editing Tool. Pro-

ceedings of the Seventh Conference on International Language Resources and Eval-

uation (LREC 2010), pages 2228–2235, May 2010.

[25] KARPATHY, A. and LI, F.-F. Deep Visual-Semantic Alignments for Generating

Image Descriptions. CoRR, abs/1412.2306, 2014. URL http://arxiv.org/abs/

1412.2306.

[26] LI, X. and ROTH, D. Learning Question Classifiers. In Proceedings of the 19th Inter-

national Conference on Computational Linguistics - Volume 1, COLING ’02, pages

1–7, Stroudsburg, PA, USA, 2002. Association for Computational Linguistics. doi:

10.3115/1072228.1072378. URL http://dx.doi.org/10.3115/1072228.1072378.

[27] LI, X. and ROTH, D. Learning Question Classifiers: The Role of Seman-

tic Information. Nat. Lang. Eng., 12(3):229–249, September 2006. ISSN 1351-

3249. doi: 10.1017/S1351324905003955. URL http://dx.doi.org/10.1017/

S1351324905003955.

[28] LIN, J. An Exploration of the Principles Underlying Redundancy-based Factoid

Question Answering. ACM Trans. Inf. Syst., 25(2), April 2007. ISSN 1046-8188.

doi: 10.1145/1229179.1229180. URL http://doi.acm.org/10.1145/1229179.

1229180.

[29] MALINOWSKI, M., ROHRBACH, M. and FRITZ, M. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images. CoRR,

abs/1505.01121, 2015. URL http://arxiv.org/abs/1505.01121.

[30] MANNING, C. and KLEIN, D. Optimization, maxent models, and conditional

estimation without magic. In Proceedings of the 2003 Conference of the North

American Chapter of the Association for Computational Linguistics on Human

Language Technology: Tutorials - Volume 5, NAACL-Tutorials ’03, pages 8–8,

Stroudsburg, PA, USA, 2003. Association for Computational Linguistics. doi:

10.3115/1075168.1075176. URL http://dx.doi.org/10.3115/1075168.1075176.

113

http://arxiv.org/abs/1412.2306
http://arxiv.org/abs/1412.2306
http://dx.doi.org/10.3115/1072228.1072378
http://dx.doi.org/10.1017/S1351324905003955
http://dx.doi.org/10.1017/S1351324905003955
http://doi.acm.org/10.1145/1229179.1229180
http://doi.acm.org/10.1145/1229179.1229180
http://arxiv.org/abs/1505.01121
http://dx.doi.org/10.3115/1075168.1075176

Bibliography

[31] MANNING, C. D., SURDEANU, M., BAUER, J., FINKEL, J. BETHARD, S. J.

and MCCLOSKY, D. The Stanford CoreNLP natural language processing toolkit.

In Proceedings of 52nd Annual Meeting of the Association for Computational Lin-

guistics: System Demonstrations, pages 55–60. Association for Computational Lin-

guistics, 2014. URL http://www.aclweb.org/anthology/P/P14/P14-5010.

[32] MARDIS, S., BURGER, J., ANAND, P., ANDERSON, D., GRIFFITH, J., LIGHT,

M., MCHENRY, C., MORGAN, A. and PONTE, J. Qanda and the Catalyst

Architecture. In Proceedings of The Tenth Text REtrieval Conference, TREC 2001,

Gaithersburg, Maryland, USA, November 13-16, 2001, 2001. URL http://trec.

nist.gov/pubs/trec10/papers/MITRE-trecX-1.pdf.

[33] MOLDOVAN, D., BOWDEN, M. and TATU, M. A temporally-enhanced Pow-

erAnswer in TREC 2006. In Proceedings of the Fifteenth Text REtrieval Confer-

ence, TREC 2006, Gaithersburg, Maryland, USA, November 14-17, 2006. Proc. of

TREC-2006, 2006.

[34] NG, J. P. and KAN, M. Y. QANUS: An Open-source Question-Answering Platform.

CoRR, abs/1501.00311, 2015. URL http://arxiv.org/abs/1501.00311.

[35] PELZER, B., WERNHARD, C. System Description: E-KRHyper. In: Automated

Deduction. 2007.

[36] REN, M, KIROS, R. and ZEMEL, R. S. Image Question Answering: A Visual

Semantic Embedding Model and a New Dataset. CoRR, abs/1505.02074, 2015.

URL http://arxiv.org/abs/1505.02074.

[37] SAISAS, J. and QUARESMA, .P. The Senso question answering approach to Por-

tuguese QA@CLEF-2007. In Working Notes for CLEF 2007 Workshop co-located

with the 11th European Conference on Digital Libraries (ECDL 2007), Budapest,

Hungary, September 19-21, 2007. Working Notes for the CLEF 2007 Workshops,

2007.

[38] SCHILLER, A., TEUFEL, S., STÖCKERT, C. and THIELEN, C. Vorläufige

Guidelines für das Tagging deutscher Textcorpora mit STTS. Technical report,

Universität Stuttgart, Institut für maschinelle Sprachverarbeitung, and Seminar

für Sprachwissenschaft, Universität Tübingen, 1995.

114

http://www.aclweb.org/anthology/P/P14/P14-5010
http://trec.nist.gov/pubs/trec10/papers/MITRE-trecX-1.pdf
http://trec.nist.gov/pubs/trec10/papers/MITRE-trecX-1.pdf
http://arxiv.org/abs/1501.00311
http://arxiv.org/abs/1505.02074

Bibliography

[39] SCHLAEFER, N., GIESELMANN, P. and SAUTTER, G. The EPHYRA QA Sys-

tem at TREC 2006. 2006. URL http://www.cs.cmu.edu/~nico/pubs/trec2006_

schlaefer.pdf.

[40] SCHLAEFER, N., KO, J., BETTERIDGE, J., SAUTTER, G., PATHAK, M. and

NYBERG, E. Semantic Extensions of the EPHYRA QA System for TREC 2007,

2007.

[41] SUN, H., MA, H., YI, W., TSAI, C., LIU, J. and CHANG, M. Open domain ques-

tion answering via semantic enrichment. In Proceedings of the companion publication

of the 24th international conference on World Wide Web. ACM – Association for

Computing Machinery, May 2015. URL http://research.microsoft.com/apps/

pubs/default.aspx?id=241399.

[42] SUTTON, C. and MCCALLUM, A. An Introduction to Conditional Random Fields

for Relational Learning. Introduction to statistical relational learning, pages 93–128,

2006.

[43] TIWARI, A. and SEKHAR, A. Review Article: Workflow Based Framework for Life

Science Informatics. Comput. Biol. Chem., 31(5-6):305–319, October 2007. ISSN

1476-9271. doi: 10.1016/j.compbiolchem.2007.08.009. URL http://dx.doi.org/

10.1016/j.compbiolchem.2007.08.009.

[44] TOUTANOVA, K. and MANNING, C. D. Enriching the Knowledge Sources Used in

a Maximum Entropy Part-of-Speech Tagger. In Proceedings of the Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and Very Large

Corpora (EMNLP/VLC-2000), pages 63–70, 2000.

[45] TOUTANOVA, K., MANNING, C. D. and SINGER, Y. Feature-Rich Part-of-

Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-NAACL

2003, pages 252–259, 2003.

115

http://www.cs.cmu.edu/~nico/pubs/trec2006_schlaefer.pdf
http://www.cs.cmu.edu/~nico/pubs/trec2006_schlaefer.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=241399
http://research.microsoft.com/apps/pubs/default.aspx?id=241399
http://dx.doi.org/10.1016/j.compbiolchem.2007.08.009
http://dx.doi.org/10.1016/j.compbiolchem.2007.08.009

A. Appendix

A.1. Figures

Figure A.1.: ROC space of ABBREVIATION class. Comparison between baseline and
V4 classifier.

116

A. Appendix

Figure A.2.: ROC space of DESCRIPTION class. Comparison between baseline and V4
classifier.

Figure A.3.: ROC space of ENTITY class. Comparison between baseline and V4 clas-
sifier. The legend was waived caused by the lack of space. Note that stars
depict a V4 result and circles illustrate a baseline result. Same colors cor-
relate to same classes.

117

A. Appendix

Figure A.4.: ROC space of HUMAN class. Comparison between baseline and V4 classi-
fier.

Figure A.5.: ROC space of LOCATION class. Comparison between baseline and V4
classifier.

118

A. Appendix

Figure A.6.: ROC space of NUMERIC class. Comparison between baseline and V4
classifier.

119

A. Appendix

Figure A.7.: System overview of the chiQAuery system. The figure shows the annotation
pipeline as well as the processing pipeline of the system.

120

A. Appendix

A.2. Tables

Questions classes that asks for...

ABBREVIATION
ABB ABBREVIATION abbreviation of an expression
ABB EXPRESSION Asks for an expression of an abbreviation

DESCRIPTION

DES DEFINITION definition of a term or expression
DES DESCRIPTION description of a term or expression
DES MANNER behavior, manner or the ’how is it’
DES REASON reason, cause or the ’why is it’

ENTITY

ENT ANIMAL animal, pet or a creature
ENT BODY body parts or the body itself
ENT COLOR colors, tinges or colorings
ENT CREATIVE music, portraits or in general art
ENT CURRENCY currencies and units that describe money
ENT MEDICINE diseases and medicine
ENT EVENT events, meetings and scheduled things
ENT FOOD food, recipes and ingredients
ENT INSTRUMENT instruments or tools
ENT LANG languages and ways of speaking
ENT LETTER single tokens and members of an alphabet
ENT OTHER all entities that are not covered from other classes
ENT PLANT plants, trees and members of the vegetation
ENT PRODUCT products or outcomes of the industry in general
ENT RELIGION spiritual drifts and religions
ENT SPORT sports and physical activities that are related to sport
ENT SUBSTANCE liquid substances that are chemically or biologically created
ENT SYMBOL symbols, heraldic figures and badges
ENT TECHNIQUE techniques, strategies and tactics
ENT TERM significant or prominent term
ENT VEHICLE cars, plains, boats and other things that can move on
ENT WORD signifcant word or a part of a term

HUMAN

HUM GROUP organization, company, society or a group
HUM INDIVIDUAL the name of person
HUM TITLE title, working description or rank of a person
HUM DESCRIPTION detailed description (of the life) of a person

LOCATION

LOC CITY town, city or municipal
LOC COUNTRY a country
LOC MOUNTAIN rock, mountain or rock mass
LOC OTHER location that is not covered by all other classes
LOC STATE state or federal state that is part of a country

NUMERIC

NUM CODE postal code or codes that contain digits
NUM COUNT amount or quantity of something
NUM DATE date or time
NUM DISTANCE distance between entities
NUM MONEY value of money in a certain currency
NUM ORDER ranked result
NUM OTHER numeric values that are not covered by other classes
NUM PERIOD duration or cycle
NUM PERCENT percentage or proportion
NUM SPEED speed value, velocity or acceleration
NUM TEMP temperature or related measures
NUM VOLSIZE volumes, capacities and sizes
NUM WEIGHT weight

Figure A.8.: All classes that are used to classify a question

121

A. Appendix

Tag Description Examples
ADJA attributives Adjektiv [das] große [Haus]
ADJD adverbiales oder prädikatives Adjektiv [er fährt] schnell, [er ist] schnell
ADV Adverb schon, bald, doch
APPR Präposition; Zirkumposition links in [der Stadt], ohne [mich]
APPRART Präposition mit Artikel im [Haus], zur [Sache]
APPO Postposition [ihm] zufolge, [der Sache] wegen
APZR Zirkumposition rechts [von jetzt] an
ART bestimmter oder unbestimmter Artikel der, die, das, ein, eine
CARD Kardinalzahl zwei [Männer], [im Jahre] 1994
FM Fremdsprachliches Material [Er hat das mit “] A big fish [” übersetzt]
ITJ Interjektion mhm, ach, tja
KOUI unterordnende Konjunktion mit “zu” und Infinitiv um [zu leben], anstatt [zu fragen]
KOUS unterordnende Konjunktion mit Satz weil, dass, damit, wenn, ob
KON nebenordnende Konjunktion und, oder, aber
KOKOM Vergleichskonjunktion als, wie
NN normales Nomen Tisch, Herr, [das] Reisen
NE Eigennamen Hans, Hamburg, HSV
PDS substituierendes Demonstrativpronomen dieser, jener
PDAT attribuierendes Demonstrativpronomen jener [Mensch]
PIS substituierendes Indefinitpronomen keiner, viele, man, niemand
PIAT attribuierendes Indefinitpronomen ohne Determiner kein [Mensch], irgendein [Glas]
PIDAT attribuierendes Indefinitpronomen mit Determiner [ein] wenig [Wasser], [die] beiden [Brüder]
PPER irreflexives Personalpronomen ich, er, ihm, mich, dir
PPOSS substituierendes Possessivpronomen meins, deiner
PPOSAT attribuierendes Possessivpronomen mein [Buch], deine [Mutter]
PRELS substituierendes Relativpronomen [der Hund ,] der
PRELAT attribuierendes Relativpronomen [der Mann ,] dessen [Hund]
PRF reflexives Personalpronomen sich, einander, dich, mir
PWS substituierendes Interrogativpronomen wer, was
PWAT attribuierendes Interrogativpronomen welche[Farbe], wessen [Hut]
PWAV adverbiales Interrogativ- oder Relativpronomen warum, wo, wann, worüber, wobei
PAV Pronominaladverb dafür, dabei, deswegen, trotzdem
PTKZU ’zu’ vor Infinitiv zu [gehen]
PTKNEG Negationspartikel nicht
PTKVZ abgetrennter Verbzusatz [er kommt] an, [er fährt] Rad
PTKANT Antwortpartikel ja, nein, danke, bitte
PTKA Partikel bei Adjektiv oder Adverb am [schönsten], zu [schnell]
TRUNC Kompositions-Erstglied An- [und Abreise]
VVFIN finites Verb, voll [du] gehst, [wir] kommen [an]
VVIMP Imperativ, voll komm [!]
VVINF Infinitiv, voll gehen, ankommen
VVIZU Infinitiv mit “zu”, voll anzukommen, loszulassen
VVPP Partizip Perfekt, voll gegangen, angekommen
VAFIN finites Verb, aux [du] bist, [wir] werden
VAIMP Imperativ, aux sei [ruhig !]
VAINF Infinitiv, aux werden, sein
VAPP Partizip Perfekt, aux gewesen
VMFIN finites Verb, modal dürfen
VMINF Infinitiv, modal wollen
VMPP Partizip Perfekt, modal gekonnt, [er hat gehen] können
XY Nichtwort, Sonderzeichen enthaltend 3:7, H2O, D2XW3
$ Komma ,
$. Satzbeendende Interpunktion . ? ! ; :
$(sonstige Satzzeichen; satzintern - [,]()

Figure A.9.: Overview of STTS tag set used for Part Of Speech tagging

122

A. Appendix

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0,913 0,128 0,841 0,913 0,876 0,779 0,958 0,945 ENTITY
0,667 0,009 0,870 0,667 0,755 0,744 0,958 0,763 HUMAN
0,893 0,025 0,919 0,893 0,905 0,876 0,982 0,954 NUMERIC
0,865 0,026 0,790 0,865 0,826 0,806 0,962 0,890 LOCATION
0,725 0,009 0,906 0,725 0,806 0,791 0,968 0,871 DESCRIPTION
0,833 0,009 0,806 0,833 0,820 0,812 0,987 0,895 ABBREVIATION
0,859 0,065 0,863 0,859 0,858 0,805 0,966 0,916 Weighted Avg.

Figure A.10.: Results of the CLASSES classifier

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0,667 0,000 1,000 0,667 0,800 0,707 1,000 1,000 ABB ABBREVIATION
1,000 0,333 0,750 1,000 0,857 0,707 1,000 1,000 ABB EXPRESSION
0,833 0,167 0,875 0,833 0,829 0,707 1,000 1,000 Weighted Avg.

Figure A.11.: Results of the the ABBREVIATION classifier

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0,800 0,100 0,727 0,800 0,762 0,679 0,961 0,911 DES MANNER
0,750 0,017 0,938 0,750 0,833 0,794 0,990 0,971 DES DEFINITION
0,800 0,050 0,842 0,800 0,821 0,763 0,977 0,944 DES REASON
1,000 0,050 0,870 1,000 0,930 0,909 1,000 1,000 DES DESCRIPTION
0,838 0,054 0,844 0,838 0,836 0,786 0,982 0,957 Weighted Avg.

Figure A.12.: Results of the the DESCRIPTION classifier

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 ENT MEDICINE
0,000 0,003 0,000 0,000 0,000 0,000 ? ? ENT OTHER
0,667 0,007 0,833 0,667 0,741 0,734 0,979 0,813 ENT PRODUCT
0,733 0,000 1,000 0,733 0,846 0,851 0,996 0,944 ENT TERM
0,600 0,003 0,900 0,600 0,720 0,725 0,964 0,809 ENT WORD
1,000 0,010 0,833 1,000 0,909 0,908 1,000 0,992 ENT SYMBOL
0,933 0,010 0,824 0,933 0,875 0,870 0,967 0,939 ENT ANIMAL
0,933 0,010 0,824 0,933 0,875 0,870 0,998 0,979 ENT BODY
0,800 0,003 0,923 0,800 0,857 0,853 0,938 0,870 ENT PLANT
0,867 0,010 0,813 0,867 0,839 0,831 0,994 0,908 ENT FOOD
0,867 0,007 0,867 0,867 0,867 0,860 0,998 0,965 ENT COLOR
0,923 0,003 0,923 0,923 0,923 0,920 0,999 0,982 ENT INSTRUMENT
0,800 0,000 1,000 0,800 0,889 0,890 0,997 0,957 ENT VEHICLE
1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 ENT LANG
1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 ENT EVENT
0,933 0,017 0,737 0,933 0,824 0,820 0,982 0,890 ENT SPORT
1,000 0,003 0,938 1,000 0,968 0,967 1,000 1,000 ENT CURRENCY
0,929 0,007 0,867 0,929 0,897 0,892 0,999 0,984 ENT CREATIVE
1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 ENT RELIGION
1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 ENT SUBSTANCE
1,000 0,010 0,833 1,000 0,909 0,908 0,999 0,981 ENT LETTER
0,750 0,010 0,800 0,750 0,774 0,763 0,993 0,905 ENT TECHNIQUE
0,891 0,005 0,900 0,891 0,890 0,888 0,991 0,948 Weighted Avg.

Figure A.13.: Results of the the ENTITY classifier

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0,733 0,000 1,000 0,733 0,846 0,821 1,000 1,000 HUM INDIVIDUAL
1,000 0,044 0,882 1,000 0,938 0,918 1,000 1,000 HUM DESCRIPTION
1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 HUM TITLE
1,000 0,044 0,882 1,000 0,938 0,918 0,999 0,996 HUM GROUP
0,933 0,022 0,941 0,933 0,930 0,914 1,000 0,999 Weighted Avg.

Figure A.14.: Results of the the HUMAN classifier

123

A. Appendix

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0,867 0,068 0,765 0,867 0,813 0,763 0,983 0,950 LOC MOUNTAIN
0,867 0,051 0,813 0,867 0,839 0,797 0,975 0,884 LOC STATE
0,867 0,017 0,929 0,867 0,897 0,872 0,998 0,991 LOC CITY
0,733 0,034 0,846 0,733 0,786 0,739 0,959 0,897 LOC OTHER
0,857 0,033 0,857 0,857 0,857 0,824 0,973 0,934 LOC COUNTRY
0,838 0,041 0,842 0,838 0,838 0,799 0,978 0,931 Weighted Avg.

Figure A.15.: Results of the the LOCATION classifier

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0,714 0,006 0,909 0,714 0,800 0,792 0,987 0,908 NUM COUNT
0,933 0,000 1,000 0,933 0,966 0,963 0,998 0,986 NUM MONEY
0,000 0,017 0,000 0,000 0,000 0,000 ? ? NUM OTHER
0,933 0,019 0,824 0,933 0,875 0,865 0,997 0,977 NUM ORDER
0,875 0,006 0,933 0,875 0,903 0,895 0,998 0,979 NUM PERCENT
0,933 0,006 0,933 0,933 0,933 0,927 0,998 0,976 NUM SPEED
0,867 0,006 0,929 0,867 0,897 0,888 0,999 0,991 NUM CODE
0,933 0,000 1,000 0,933 0,966 0,963 1,000 0,996 NUM DATE
0,800 0,006 0,923 0,800 0,857 0,847 0,989 0,945 NUM TEMP
0,857 0,025 0,750 0,857 0,800 0,784 0,984 0,928 NUM DISTANCE
0,933 0,006 0,933 0,933 0,933 0,927 0,998 0,981 NUM WEIGHT
0,929 0,025 0,765 0,929 0,839 0,828 0,982 0,918 NUM VOLSIZE
0,929 0,000 1,000 0,929 0,963 0,961 1,000 0,995 NUM PERIOD
0,887 0,009 0,910 0,887 0,895 0,888 0,994 0,966 Weighted Avg.

Figure A.16.: Results of the the NUMERIC classifier

A.3. Acknowledgements

It is a pleasure to thank those who made this thesis possible. At first, I would like to

thank Prof. Dr.-Ing. Hans-Joachim Böhme (Thesis Supervisor) for the possibility of

writing about a topic that fascinates me from the beginning and let me restless during

the whole time of writing. I also thank him for guidance and support from the initial to

the final state of this thesis.

I would like to show my gratitude to Dipl.-Ing. (FH) Johannes Fonfara (Supervisor

during Research Seminar) who supported me and always took time for my questions and

ideas. Thanks to Dr. Sven Hellbach, Dipl.-Inf. (FH) Peter Poschmann and all other

colleagues at HTW Dresden (Research Group for Cognitive Robotics) for interesting

and valuable talks as well as explanations of relevant topics.

Furthermore, I would like to thank Ariana Lippitsch, Johannes Fonfara, Marilyn Wenk,

Andre Presser, Felix Wolff and Hermann Fliegel for the time they took to record data

for this work and thereby helped me to develop the system. At least, my respect goes

to my family who always supported me during my studies and gave me the freedom to

grow.

To put my credit for all of you in one sentence, thank you for the interesting time and

the enjoyable collaboration.

124

B. Derived Theses

The main findings of this master thesis are listed below:

• The encoding of members of a feature vector to a continuous space between [0, 1]

increases the possibilities of encoding in comparison to binary features. With this

the number of dimensions can be decreased.

• The use of the V4 approach for Answer Type Detection can be seen as more

robust against the baseline approach that uses manually engineered features. For

that, each layer (word, grammar and semantic) uses n-gram models and Bayesian

statistics.

• Lucene and StanfordNLP Core (both as the main parts) can be used to build a

Question Answering system for the German Language.

• The basic experiments that measure the overall performance of the system was

able to correctly answer 27.27% of the closed domain questions and 24.2% of the

open domain questions.

• The created data sets match scientifically approved taxonomies like the Answer

Type taxonomy proposed by Li and Roth[26]. Therefore these sets can serve, as

the first for German language, as evaluation spot for the scientific community.

• The developed, tested and evaluated system can be extended using the proposed

further experiments and ideas from chapter 9.

125

Statement of Authorship

Ich versichere, dass ich die vorliegende Masterarbeit selbstständig verfasst und keine

anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Dresden, den 21. Juli 2015

(Alexander Bresk)

126

	Acronyms
	Glossary
	List of Figures
	Introduction
	Motivation
	Aims
	Related Work
	LogAnswer
	Ephyra
	QANUS
	Qanda
	AskMSR
	QuASE

	Conclusion of Related Work
	Outline of the Thesis

	Technical Base
	Notations & Measures
	Answer Type Detection
	Answer Representation
	Performance Measures

	Machine Learning Techniques
	Naive Bayes Classifier
	Multilayer Perceptron

	Software & Frameworks
	KNIME - Konstanz Information Miner
	Weka3
	Stanford NLP Core
	Apache Lucene
	JSoup and Palladian
	GSON - Google JSON

	Data Sources
	GermaNet
	SALSA
	DATD & AR Data
	TSDD Data

	The chiAQuery System
	System Overview
	Request & Response
	Question, Query & Answer
	Knowledge
	Exceptional Question Handling
	ChiaqueryHelper

	Features & Starting Options
	Question Answering
	Client Server Architecture
	Indexing & Search
	Feature Detectors for Model Training
	Annotation
	Help

	Created Databases & Models
	SemMap
	SynMap
	Verb Database
	Pronoun Database
	Acronym Database
	Filter Database

	Directory Structure

	Text Annotation
	Document Preprocessor
	Part-of-Speech Tagger
	Named Entity Recognition
	Text Normalization
	Verb Normalizer
	Symbol Normalizer
	Acronym Normalizer
	Pronoun Normalizer
	Number Normalizer

	SynMap Processor
	SemMap Processor
	Semantic Extractors
	Index Structures for Annotated Documents

	Input Processing
	Question Preprocessor
	POS Tagger
	Named Entity Recognition
	Text Annotation for Questions
	Question Normalization
	SemMap Processor
	SynMap Processor
	Semantic Extractors

	Answer Type Detection
	Answer Representation Detection

	Query Processing
	Query Generation
	Lucene Query Generation
	Query Plan Creation

	Coarse Document Search
	Queries
	Scoring

	Web Document Search
	Queries
	Readability Techniques

	Query Processor
	Build-Up
	Processing Facts
	Processing Paragraphs
	Answer Candidates

	Answer Selection & Presentation
	Answer Processor
	Answer Filters
	Register & Rank Answer Candidates
	Apply Answer Representation

	Natural Language Generation

	Experiments & Evaluation
	Introduction
	Annotation for Model Training
	From Phrase to ARFF
	ChiaqueryQABenchmark module
	Error Classes
	Experimental Data Sets
	The Experimentation Environment

	Experiments
	Answer Type Detector
	Answer Representation
	Query Generation Algorithm
	Content Readability Experiments
	GSON Performance
	Closed Domain Question Answering
	Open Domain Question Answering

	Evaluation
	Answer Type Detector
	Answer Representation
	Query Generation Algorithm
	Content Readability Experiments
	GSON Performance
	Closed Domain Question Answering
	Open Domain Question Answering

	Conclusion & Further Work
	Conclusion
	Further Work
	Current System Improvements
	Further Experiments
	Future System Ideas

	Literature
	Appendix
	Figures
	Tables
	Acknowledgements

	Derived Theses
	Index

